《初中数学总复习资料》2017中考数学压轴试题复习第一部分专题三因动点产生的直角三角形问题201707071110.doc

上传人:秦** 文档编号:4966345 上传时间:2021-11-29 格式:DOC 页数:5 大小:311.11KB
返回 下载 相关 举报
《初中数学总复习资料》2017中考数学压轴试题复习第一部分专题三因动点产生的直角三角形问题201707071110.doc_第1页
第1页 / 共5页
《初中数学总复习资料》2017中考数学压轴试题复习第一部分专题三因动点产生的直角三角形问题201707071110.doc_第2页
第2页 / 共5页
点击查看更多>>
资源描述

《《初中数学总复习资料》2017中考数学压轴试题复习第一部分专题三因动点产生的直角三角形问题201707071110.doc》由会员分享,可在线阅读,更多相关《《初中数学总复习资料》2017中考数学压轴试题复习第一部分专题三因动点产生的直角三角形问题201707071110.doc(5页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、§13 因动点产生的直角三角形问题课前导学我们先看三个问题:1已知线段AB,以线段AB为直角边的直角三角形ABC有多少个?顶点C的轨迹是什么?2已知线段AB,以线段AB为斜边的直角三角形ABC有多少个?顶点C的轨迹是什么?3已知点A(4,0),如果OAB是等腰直角三角形,求符合条件的点B的坐标图1 图2 图3如图1,点C在垂线上,垂足除外如图2,点C在以AB为直径的圆上,A、B两点除外如图3,以OA为边画两个正方形,除了O、A两点以外的顶点和正方形对角线的交点,都是符合题意的点B,共6个解直角三角形的存在性问题,一般分三步走,第一步寻找分类标准,第二步列方程,第三步解方程并验根一般情

2、况下,按照直角顶点或者斜边分类,然后按照三角比或勾股定理列方程有时根据直角三角形斜边上的中线等于斜边的一半列方程更简便解直角三角形的问题,常常和相似三角形、三角比的问题联系在一起如果直角边与坐标轴不平行,那么过三个顶点作与坐标轴平行的直线,可以构造两个新的相似直角三角形,这样列比例方程比较简便如图4,已知A(3, 0),B(1,4),如果直角三角形ABC的顶点C在y轴上,求点C的坐标我们可以用几何的方法,作AB为直径的圆,快速找到两个符合条件的点C如果作BDy轴于D,那么AOCCDB设OCm,那么这个方程有两个解,分别对应图中圆与y轴的两个交点 图4例 19 2015年湖南省益阳市中考第21题

3、如图1,已知抛物线E1:yx2经过点A(1,m),以原点为顶点的抛物线E2经过点B(2,2),点A、B关于y 轴的对称点分别为点A、B(1)求m的值及抛物线E2所表示的二次函数的表达式;(2)如图1,在第一象限内,抛物线E1上是否存在点Q,使得以点Q、B、B为顶点的三角形为直角三角形?若存在,求出点Q的坐标;若不存在,请说明理由;(3)如图2,P为第一象限内的抛物线E1上与点A不重合的一点,连结OP并延长与抛物线E2相交于点P,求PAA与PBB的面积之比 图1 图2动感体验请打开几何画板文件名“15益阳21”,拖动点P在抛物线E1上运动,可以体验到,点P始终是线段OP的中点还可以体验到,直角三

4、角形QBB有两个思路点拨1判断点P是线段OP的中点是解决问题的突破口,这样就可以用一个字母表示点P、P的坐标2分别求线段AABB,点P到AA的距离点P到BB的距离,就可以比较PAA与PBB的面积之比图文解析(1)当x1时,yx21,所以A(1, 1),m1设抛物线E2的表达式为yax2,代入点B(2,2),可得a所以yx2(2)点Q在第一象限内的抛物线E1上,直角三角形QBB存在两种情况:图3 图4如图3,过点B作BB的垂线交抛物线E1于Q,那么Q(2, 4)如图4,以BB为直径的圆D与抛物线E1交于点Q,那么QD2设Q(x, x2),因为D(0, 2),根据QD24列方程x2(x22)24解

5、得x此时Q(3)如图5,因为点P、P分别在抛物线E1、E2上,设P(b, b2),P(c, )因为O、P、P三点在同一条直线上,所以,即所以c2b所以P(2b, 2b2)如图6,由A(1, 1)、B(2,2),可得AA2,BB4由A(1, 1)、P(b, b2),可得点P到直线AA的距离PM b21由B(2,2)、P(2b, 2b2),可得点P到直线BB的距离PN2b22所以PAA与PBB的面积比2(b21)4(2b22)14图5 图6考点延伸第(2)中当BQB90°时,求点Q(x, x2)的坐标有三种常用的方法:方法二,由勾股定理,得BQ2BQ2BB2所以(x2)2(x22)2(x

6、2)2(x22)242方法三,作QHBB于H,那么QH2BH·BH所以(x22)2(x2) (2x) 例 20 2015年湖南省湘潭市中考第26题如图1,二次函数yx2bxc的图象与x轴交于A(1, 0)、B(3, 0)两点,与y轴交于点C,连结BC动点P以每秒1个单位长度的速度从点A向点B运动,动点Q以每秒个单位长度的速度从点B向点C运动,P、Q两点同时出发,连结PQ,当点Q到达点C时,P、Q两点同时停止运动设运动的时间为t秒(1)求二次函数的解析式;(2)如图1,当BPQ为直角三角形时,求t的值;(3)如图2,当t2时,延长QP交y轴于点M,在抛物线上是否存在一点N,使得PQ的中

7、点恰为MN的中点,若存在,求出点N的坐标与t的值;若不存在,请说明理由图1 图2动感体验请打开几何画板文件名“15湘潭26”,拖动点P在AB上运动,可以体验到,BPQ有两次机会可以成为直角三角形还可以体验到,点N有一次机会可以落在抛物线上 思路点拨1分两种情况讨论等腰直角三角形BPQ2如果PQ的中点恰为MN的中点,那么MQNP,以MQ、NP为直角边可以构造全等的直角三角形,从而根据直角边对应相等可以列方程图文解析(1)因为抛物线yx2bxc与x轴交于A(1, 0)、B(3, 0)两点,所以y(x1)(x3)x22x3(2)由A(1, 0)、B(3, 0)、C(0,3),可得AB4,ABC45&

8、#176;在BPQ中,B45°,BP4t,BQt直角三角形BPQ存在两种情况:当BPQ90°时,BQBP解方程t(4t),得t2(如图3)当BQP90°时,BPBQ解方程4t2t,得t(如图4)图3 图4 图5(3)如图5,设PQ的中点为G,当点G恰为MN的中点时,MQNP作QEy轴于E,作NFx轴于F,作QHx轴于H,那么MQENPF由已知条件,可得P(t1, 0),Q(3t,t)由QEPF,可得xQxNxP,即3txN(t1)解得xN2将x2代入y(x1)(x3),得y3所以N(2,3)由QH/NF,得,即整理,得t29t120解得因为t2,所以取考点伸展第(3)题也可以应用中点坐标公式,得所以xN2xG2

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 高中资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁