《覆盖件冲压工艺设计实例.doc》由会员分享,可在线阅读,更多相关《覆盖件冲压工艺设计实例.doc(119页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、覆盖件冲压工艺设计实例1182020年5月29日文档仅供参考 覆盖件冲压工艺设计1.工艺设计前的准备工作32.零件的前碰撞梁工艺分析和设计42.1.零件工艺分析42.2.1/4拉延件工艺分析与设计52.2.1.确定零件的冲压方向52.2.2.零件的压料面和分模线62.2.3.拉延件合理的工艺补充82.2.4.拉延筋的正确合理设计172.3.2/3,3/3修边+冲孔工艺设计192.3.1.修边工艺分析和设计192.3.2.废料刀设计212.3.3.修边工艺造型253.零件前风窗下横梁上板工艺分析和设计293.1.1/4拉延件工艺分析与设计303.1.1.拉延冲压方向和工序内容303.1.2.压料
2、面和分模线313.1.3.创立工艺补充造型343.2.2/4修边工艺分析与设计393.2.1.修边冲压方向和工序内容393.2.2.修边工艺造型403.3.3/4翻边翻孔工序工艺设计413.3.1.翻边冲压方向和工序内容413.3.2.翻边模各项参数433.3.3.翻边工艺造型453.4.4/4冲孔和侧冲孔工序工艺设计473.4.1.冲孔冲压方向和工艺内容474.零件仪表台板安装梁工艺分析和设计504.1.1/4工序拉延件工艺分析与设计514.1.1.拉延冲压方向和工序内容514.1.2.压料面和分模线524.1.3.创立工艺补充造型554.2.2/4工序修边+冲孔工艺分析与设计594.2.1
3、.修边冲压方向和工序内容594.2.2.废料刀设计604.2.3.修边工艺造型604.3.3/4侧修边+侧冲孔+翻孔工序工艺设计614.3.1.侧修边冲压方向和工序内容614.4.4/4翻边工序工艺设计624.4.1.翻边冲压方向和冲压内容634.4.2.创立工艺造型645.零件行李箱外板上件工艺分析和设计665.1.OP05落料工序工艺分析与设计675.2.OP10拉延工序工艺分析与设计685.2.1.拉延冲压方向和工序内容695.2.2.压料面和分模线695.2.3.创立工艺造型725.3.OP20修边+侧修边+侧冲孔工序工艺分析与设计755.3.1.修边冲压方向和工序内容755.3.2.
4、废料刀设计775.4.OP30侧翻边+侧冲孔工序工艺分析与设计785.4.1.冲压方向和工序内容785.5.OP40侧翻边+翻边工序工艺分析与设计795.5.1.冲压方向和工序内容796.识图821. 工艺设计前的准备工作在拿到冲压件进行工艺设计前,必须查阅有关资料,以便明确产品的具体要求、现有的条件等,为设计合理而可行的冲压工艺做好必要的准备。这些资料主要有:1. 零件图或产品图,能够参考的模型。2. 冲压件的公差。3. 类似零件的成型性及作业性的有关资料、曾出现的各种质量问题及解决方法。4. 关于产品所用钢材的有关资料,如材料的各项性能参数值,表面质量等。5. 各种摸具设计的标准和模具零件
5、的规格。6. 现有压力机的参数和附属装置、生产率等方面的资料。7. 产量和要求的时间。经过对零件图和拉深件图的研究,应该了解该零件所应具有的功能、所要求的单个零件的强度,表面质量以及相关零件之间所要求的相关精度。并明确下列事项:1. 零件轮廓、法兰、侧壁及底部是否有形状急剧变化的部分、负角的部位等,以及其它成形困难的形状。2. 该零件和有关零件的焊接面、装配面、镶嵌面有什么要求。3. 孔的精度(直径、位置)、孔和孔的间距的要求,这些孔的位置在何处(平面部分、倾斜部分、侧壁部分)。4. 各个凸缘精度允许达到什么程度(包括长度、凸缘面的位置、回弹)。5. 焊接、装配的基准面和孔在何处。6. 零件冲
6、压成形需要解决的重点问题有哪些。7. 材料的利用率如何。在进行工艺设计之前,必须对零件进行合理全面的工艺分析。根据零件本身原始信息(包含产品的材质,料厚,产品形状),冲压件的公差和车身装配位置,客户和本工厂的压力机参数和生产方式(自动线,手工线),冲压件的生产批量大小以及客户提出的模具设计的技术要求来进行冲压件的工艺分析。2. 零件的前碰撞梁工艺分析和设计2.1. 零件工艺分析下面我们以东风项目中前碰撞梁为例 图2.1零件名称:前碰撞梁材料:BUSD料厚:2.0mm图2.1为零件的产品数模,根据零件的数模和提供的基本信息,以及客户的技术要求我们来进行零件的前碰撞梁的工艺分析,并确定经过几道冲压
7、工序来获得我们的零件。冲压零件不论复杂或简单我们能够概括为它都是经过两类模具来获得的:1成形类模具(包括拉延模,成形模,整形模,翻边模,侧翻和侧整模),2修边类模具(包括修边模,落料模,冲孔模,侧修和侧冲孔模具),成形类模具是经过不同的成形方式来完成我们的产品形状,修边类模具则是切除零件在成形后的废料以达到产品的尺寸精度。如图2.1所示,首先我们根据零件数模能够确定该零件拉深的成形难度不是太高,形状不是很复杂,产品在车身状态不存在负角,唯一需要考虑的或者说零件成形的唯一风险性就是产品反弹,如图2.1示梁类件是典型易反弹的形状,因此我们在成形类模具中必须考虑产品的反弹量,零件所有形状能够经过一次
8、拉延全部完成。如图2.1所示,我们能够由零件数模了解零件一共有8个孔位,6个在产品平面的区域,2个在产品侧壁区域,产品轮廓线比较规则能够在拉延的冲压方向下保证垂直修边。因此我们在了解产品的装配关系和孔的精度,公差后,我们能够把零件的全部工序确定下来。零件工序确定如下:1,拉延2,修边+冲孔3,冲孔+侧冲孔。2.2. 1/4拉延件工艺分析与设计零件成形的确定其实就是确定拉延工序,是编制覆盖件冲压工艺首先要考虑的问题,使之不但能够方便于拉延,而且拉延后还要能够方便于修边,又要为翻边创造有利条件,因此,拉延件确定下来以后覆盖件冲压工艺也就基本上确定了。确定拉延工序,我们必须考虑以下几个重点:2.2.
9、1. 确定零件的冲压方向确定冲压方向是确定拉延件首先要遇到的问题,它不但决定能否拉延出满意的拉延件来,而且影响到工艺补充部分的多少和压料面形状。有些形状复杂的拉延件往往会由于冲压方向确定不当,而拉延不出满意的拉延件来,只好改变冲压方向,这样就需要修改拉延模,同时还必须相应地修改拉延以后的冲模,回造成很大的成本损失,因此冲压方向必须慎重考虑确定之。确定冲压方向必须考虑以下几个重点:a) 保证凸模能够顺利进入凹模,尽量避免负角b) 凸模开始拉延时与拉延的毛坯的接触状态,接触面积要大,尽量靠近中间,接触地方要多,要分散c) 压料面各部分进料阻力要均匀依以上原则,图2.1所示零件的冲压方向我们就能够确
10、定下来如图2.2。图2.2图1.2示Z轴坐标方向为该零件的冲压方向,该冲压方向与零件顶面垂直,不存在负角,凸模开始拉延时与毛坯的接触状态面积大而且都在零件的中间部分有利于拉延,同时后工序修边冲孔都能够保证垂直修边和冲孔,因此拉延和后工序修边、冲孔都可使用该冲压方向。2.2.2. 零件的压料面和分模线压料面是工艺补充部分的一部分,指凹模圆角半径以外的那一部分。压料圈将拉延毛坯压紧在凹模压料面上,凸模对拉延毛坯拉延,不但要使压料面上的材料不皱,更重要的是保证拉入凹模的材料不皱又不裂,分模线是凸模和压边圈的分界线,一般是指压料面和凸模面延伸所产生的那条线。基本上压料面和分模线的形状和好坏很大部分决定
11、冲压件的拉延状态好坏。压料面一般有两种情况:l 压料面就是覆盖件本身的凸缘部分。l 压料面是工艺补充补充成的。确定压料面的形状我们必须考虑下面的问题:l 尽量降低拉延深度。l 凸模对拉延毛坯一定要有拉延状态产生 压料面的展开长度必须比凸模展开长度短,压料面所形成的夹角必须比凸模的夹角要大。l 压料面形状尽量简单化,尽量采用水平压料面。l 压料面应使成形深度小且各部分深度接近一致。l 压料面应使毛坯在拉深成形和修边工序中有可靠定位,并考虑送料和取件方便。l 当覆盖件底部有反成形时,压料面必须高于反成形形状的最高点。l 不要在某一方向产生很大的侧向力。接下对上图2.1所示零件进行压料面和分模线的创
12、立。根据零件数模我们能够有两种方法创立零件的压料面:1压料面就直接使用覆盖件本身的凸缘部分,2压料面由工艺补充够成即自己创立。对两种方法分别进行分析,首先如果直接使用覆盖件的凸缘为压料面,我们能够节省毛坯材料提高材料利用率,但从工艺上考虑则会给零件带来起皱的现象,而且不利于克制和避免零件的反弹,前面就有提到过梁类件是零件中典型的易反弹件,因此直接使用零件凸缘为压料面不可行的,只能根据以上我们提到过的创立压料面的原则经过工艺补充自己创立压料面。经过综合以上原因和条件,前碰撞梁零件的压料面我们创立如下图2.3所示图2.3当压料面确定下来后,接下来就要确定拉延件的分模线。分模线的作用就是分开了凸模和
13、压料圈两个工作部件,从成形角度来说就是分开了实际拉延的压料部分和拉延成形部分,一般分模线的轮廓形状结合压料面的型面形状在很大程度上就决定了零件拉延的初始状态好坏和最终零件是否起皱、开裂、反弹、刚性不足等缺陷,因此分模线也是对拉延件的成形起决定性作用的。创立分模线时我们需注意以下几点:l 分模线轮廓形状尽量不要发生急剧的变化,l 分模线创立时要结合压料面的形状,l 分模线创立时要结合产品零件的修边轮廓准确计算尺寸保证工艺补充合适,保证修边的余量,l 分模线创立时要考虑到零件接近分模线位置的形状是否变化剧烈,是否易产生开裂和起皱等缺陷,应如何适当的改变分模线的形状来避免,来优化零件的拉延状态。依据
14、以上几点,前碰撞梁零件的分模线我们确定如下图2.4:图2.42.2.3. 拉延件合理的工艺补充工艺补充是指为了顺利拉深成形出合格的制件、在冲压件的基础上添加的那部分材料。由于这部分材料是成形需要而不是零件需要,故在拉深成形后的修边工序要将工艺补充部分切除掉。工艺补充是拉深件设计的主要内容,不但对拉深成形起着重要影响,而且对后面的修边、整形、翻边等工序的方案也有影响。工艺补充部分有两大类:一类是零件内部的工艺补充,即填补内部孔洞,这部分工艺补充不增加材料消耗,而且在冲内孔后,这部分材料仍可适当利用;另一类工艺补充是在零件沿轮廓边缘展开的基础上添加上去的,它包括拉深部分的补充和压料面两部分。由于这
15、种工艺补充是在零件的外部增加上去的,称为外工艺补充,它是为了选择合理的冲压方向、创造良好的拉深成形条件而增加,它增加了零件的材料消耗。工艺补充部分制定的合理与否,是冲压工艺设计先进与否的重要标志,它直接影响到拉深成形时工艺参数、毛坯的变形条件、变形量大小、变形分布、表面质量、破裂、起皱等质量问题的产生等。工艺补充设计的基本原则:l 内孔封闭补充原则 对零件内部的空首先进行封闭补充,使零件成为无内孔的制作。l 简化拉深件结构形状原则 零件外部的工艺补充要有利于拉深件的拉延,有利于毛坯的均匀流动和均匀变形。l 保证良好的塑性变形条件 对于一些深度较浅、曲率较小的汽车覆盖件来说,必须保证毛坯在成形过
16、程中有足够的塑性变形量,才能保证其能有较好的形状精度和刚度。l 外工艺补充部分尽量小 由于外工艺补充不是零件本体,以后将被切掉变成废料,因此在保证拉深件具有良好的拉深件的前提下,应尽量减小这部分工艺补充,以减少材料浪费,提高材料利用率。l 对后工序要有利原则 工艺补充要考虑对后工序的影响,要有利于后工序的定位稳定,尽量保证能够垂直修边等。l 双件拉深工艺补充 当冲压件为左/右件时,往往为了节省成本而进行双件拉深。当左/右件合做时,拉深件的深度尽量浅,中间工艺补充部分要有一定的宽度,才能够保证修边修边模的强度。 根据以上工艺补充基本原则,零件整个拉延工艺补充如图2.5:图2.5整个拉延工序的工序
17、数模如上图2.5,除开零件产品数模部分其余都是零件拉延工艺补充,零件外部的补充为外部工艺补充,内部的补充为内部工艺补充,其中包括:压料面,拉延筋,到底标记工艺造型,和预防起皱缺陷的余肉造型等,具体从零件数模到完成整个拉延工序的工序数模下面一一解析:a) 拿到零件数模,首先确定零件的冲压方向,再根据零件车身坐标百分线位置确定零件的数模中心(数模中心start point X,Y,Z坐标一般以百为单位),数模中心确定后将产品数模由数模中心移至CAD软件的绝对坐标处(这里以UG软件为例),再确认冲压方向与Z轴是否重合是否需要旋转角度,具体整个移动和旋转的坐标值和角度值我们都需要记录下来,以保证下一次
18、数模更新时能很快的与旧数模进行对比,如下图2.6所示原车身坐标的产品数模图2.6b) 当数模位置和冲压方向确定后,接下就是进行拉延压料面的创立。前面进行压料面分析时已经提过不能直接使用零件的凸缘面为压料面,需要我们自己来创立。根据前面所说创立压料面的基本原则将压料面按图2.7示尺寸创立如下,一般保证压料面和零件最低部分距离为20mm左右,太多会加大补充造型浪费材料,太少则对成形的意义不大,压料面的趋势大致按照零件顶部的趋势保证零件拉延时的初始状态尽量最多区域的拉延,零件顶部形状转角区域压料面能够创立转角,压料面形状不能存在尖角,每个尖角部分都要进行倒圆角,圆角的大小不宜太小,一般能够R500,
19、R1000,倒圆角要结合零件的型面趋势,左右形状大致一样的零件能够直接做出一半再进行镜像的操作,尺寸则参照图2.7所示尺寸创立,注意图2.7所示为零件的前视图。图2.7c) 压了面创立成功后,接下来就是分模线的如何创立,前面说到分模线对零件的拉延成形起到决定性的作用,创立拉延分模线时要结合产品零件的形状尺寸和压料面的形状。依据以上创立拉延分模线的要点,零件拉延分模线创立如下图2.8所示:图2.8 创立出以上尺寸的分模线,在不清楚怎样,经过什么方法确定以上尺寸时可能会感到要确定下这些尺寸会无从下手。下面就将如何怎样确定出合理的分模线尺寸进行分析: 一般在创立分模线平面尺寸之前都会结合零件截面图调
20、整各个参数来确定起尺寸,如下图2.9所示SEC A-A:,图2.10为细节放大图图 2.9图2.10一般在确定分模线平面尺寸之前都会对其零件最大轮廓处的截面进行分析,如上图2.9 SEC A-A就是零件X方向最大轮廓处的截面,截面中经过确定拉延补充造型中产品延伸部分,凸模R,凹模R,侧壁拔模尺寸来确定零件分模线尺寸,1, 首先产品延伸部分(为了避免加工和调模破坏产品形状以及后工序修边刀块的强度)一般尺寸为310mm,最小不能小与3mm,2, 凸模R一般为R5R12(一般根据拉延深度调整,拉延深度浅取小值反之取大值),3, 凹模R一般为R5R15(凹模圆角大小能够直接控制拉延成形的进料阻力,R取
21、小值时进料阻力大,能够改进起皱和刚性不足,R取大值时进料阻力小,能够改进零件开裂,料厚大时能够适当调整),4, 拉延件侧壁斜度一般取612(侧壁斜度大小能够直接控制和改进零件成形状态,保证零件表面有足够的拉应力,保毛坯的全部拉伸,影响后工序定位的稳定和可靠,以及修边刀块强度和修边条件的好坏)。拉延侧壁确定下来后,它与压料面相交所形成的线就是我们需要的分模线,分模线一般都会在一个方向比如说X+方向取零件轮廓最大的部分截面的来确定。如上图1.9就能够确定分模线X+的尺寸为距数模中心为525mm,依据以上的步骤我们同样确定其它方向的尺寸,如下图2.11 SEC BB,图2.12为细节放大图图2.11
22、图2.12当各个方向的分模线的尺寸确定下来后,我们直接在转角部分对它进行倒圆角操作,倒圆角时结合零件形状保证各部分均匀,这里对概零件我们倒圆角R30mm,分模线确定成功。d) 分模线确定后,接下就是进行拉延的工艺补充设计。在零件内部有空的部分,能够先对其内部进行工艺补充,将所有的孔封闭起来,剩下就是零件的外部工艺补充,也是拉延造型中的难点,工艺补充的好坏直接决定拉延成形的质量以及后工序的修边条件和翻边工序的成败与否。以零件前碰撞梁为例:图 2.13 按照上图2.13所示顺序:1,先创立压料面,2,经过分模线创立侧壁部分,3创立零件的延伸部分,4创立凸模R角,5创立凹模R角,6创立拉延筋。l 首
23、先直接先创立出压料面部分l 在压料面和分模线确定后,直接在CAD建模软件中将分模线投影到3D的压料面上,如下图2.14图 2.14l 接下用投影的3D曲线按一定的拔模角度拉伸出侧壁面,并进行倒圆角动作,如下图2.15图 2.15用CAD软件将零件由零件往外延伸,如下图 2.16图 2.16用拉伸出的侧壁面跟延伸的产品进行凸模倒圆角如下图2.17图2.17用拉伸出的侧壁跟压料面进行凹模倒圆角如图2.18图 2.18创立拉延筋如图2.19图 2.19进行拉延工艺补充的辅助造型(倒底标记造型,防起皱余肉造型)如图2.20,2.21图 2.20图 2.21各部分的尺寸可直接依据之前所提,具体如下图2.
24、22:图2.222.2.4. 拉延筋的正确合理设计在汽车覆盖件拉深成形中,广泛使用拉延筋(或拉深槛)。它是调节和控制压料面作用力的一种最有效和使用的方法。拉深筋的作用力在压料面作用力中占有较大的比例,且能够经过改变拉深筋的参数很容易地改变这种作用力的大小,在拉深过程中起着重要作用:1) 增大进料阻力。压料面上的毛坯在经过拉深筋时要经过四次弯曲和反弯曲,使毛坯向凹模流动的阻力大大增加,也使凹模内部的毛坯在较大的拉力作用下产生较大的塑性变形,从而提高覆盖件的刚度和减少由于变形不足而产生的回弹、松弛、扭曲、波纹及收缩等,防止拉深成形时悬空部位的其皱和畸变。2) 调节进料阻力的分布经过改变压料面上不同
25、部位拉深筋的参数,能够改变同部位的进料阻力的分布,从而控制压料面上各部位材料向凹模内流动的速度和进料量,调节拉深件各变形区的拉力及其分布,使各变形区按需要的变形方式、变形程度。3) 能够在较大范围内调节进料阻力的大小在双动压力机上,调节滑块的高低,只能粗略地调节压边力,拉深筋能够配合压边力的调节在较大范围内控制材料的流动情况4) 拉深筋外侧已经起皱的板料可经过拉深筋进行一定程度的矫平。设置拉深筋,最根本的目的是为成形板材提供足够的拉力。另外,也必须考虑其它方面的因素,才能确保冲压件的成形质量。不同形式的拉深筋, 经过调整几何参数,能够在阻力上完全等效,但在其它方面却不一定能够等效。因此,设计什
26、么样的拉深筋,除了满足阻力要求外,还应考虑以下几个方面的因素: 对单筋来说,其结构简单,便于加工和模具调试;宽度比较小能够减小模具尺寸;而重筋则结构比较复杂,加工难度大,宽度也大,会增加模具尺寸和毛坯尺寸。因此,一般情况下多选用单筋。 在毛坯变形不需要特别大的拉深阻力,切修边线不在压料面部位时,可在凹模口部设置拉深槛,即能保证拉深成形所必须的拉深阻力,又能够减小毛坯尺寸和模具尺寸。 保证冲压件成形质量和表面质量。 提高拉深筋的使用寿命,有利于拉深筋的加工和调整。 当零件料厚过大2mm以上,拉深筋作用会变小。设计拉深筋的数目和位置时,必须根据拉深件形状特点、拉深深度、材料料厚及材料流动特点等情况
27、而定。 为了增加进料阻力,提高材料变形程度和刚性,在不破裂的前提下,都会放置整圈的拉深筋 为了增加径向拉应力,降低切向压应力,为了防止起皱,在容易起皱的部位都会放置拉深筋 为了调整进料阻力和进料量的均匀,在拉深深度相差较大时,在浅的部位都会放置筋,而深的部位不设拉深筋零件前碰撞梁,根据以上原则在其直线段为了增加进料阻力,提高材料变形程度和刚性,减少回弹,就在直线段各设置一条拉深筋。拉延筋一般从分模线偏置25mm,考虑材料利用率能够20mm.到此,零件前碰撞梁整个拉延工艺数模就创立成功。2.3. 2/3,3/3修边+冲孔工艺设计2.3.1. 修边工艺分析和设计修边工序是指将为保证拉深成形而在冲压
28、零件的周围增加的工艺补充部分和冲压件内部增加的工艺补充部分冲裁剪切掉的冲压工序。该工序是保证汽车覆盖件零件尺寸的一道重要工序,修边线的确定是该工序的关键。按修边方向分类的修边类型:l 垂直修边是指修边凸(凹)模按垂直方向作上下运动的修边动作。垂直修边所用模具结构简单、废料处理也比较方便。l 水平修边是指修边凸(凹)模沿水平方向运动的修边加工。凸(凹)模的水平方向运动能够经过斜楔机构或经过在模具上加装水平方向运动的液压缸来实现。l 倾斜修边是指修边凸(凹)模沿与垂直方向成一定角度的方向运动的修边加工。凸(凹)模的倾斜水平方向运动能够经过斜楔机构或经过在模具上加装水平方向运动的液压缸来实现。修边与
29、切断工序的工艺设计需注意以下要点:1,选择正确合理的修边方向,选择修边方向时应考虑以下几个方面:l 保证修边质量,若修边方向与制件型面的法线方向间的夹角过大,会在修边过程中产生撕裂现象。同时,由于凸凹模刃口部位呈锐角,模具易损坏,寿命低。因此,一般要求修边方向与制件型面的法线方向间的夹角在15以内比较好,最大不超过30。l 尽量使模具结构简单。合理的修边方向应尽量使模具结构简单,以减少模具费用。垂直修边所用模具结构是最简单的,故尽量选择垂直修边。l 要考虑到拉深件的定位可靠,操作者操作方便、生产安全。l 充分考虑模具的强度。在进行多处修边、冲孔时,要注意修边刃口的壁厚强度和耐疲劳强度。l 考虑
30、废料处理合理排放,废料排放处理的好坏对冲压作业速度有很大影响。外部修边时,1,修边废料的形状不要形成L形或U形;2,废料刀不要平行配列,要考虑废料的流动方向应张开一定的角度(一般5-15);3,手工处理废料时,废料的分割不要太小,一般以对角长度400-650mm为宜;4,采用废料自动滑落的废料槽时,滑槽的安装角度以30最好,最小不要小于25;5,废料的流动方向不能妨碍工人的操作;6,废料自动下落时有困难时,要考虑安装顶出器或弹性卸料装置。l 覆盖件修边时,因形状复杂,为了保证修边质量,不同的部位需采用不同的修边方向。这种情况要在DL图上注明修边的部位和修边方向。2,修边部位和修边方向的标注对形
31、状复杂的拉深件进行修边时,为保证修边质量,不同的部位可能需要采用不同的修边方向。这种情况下,要在DL图上将每一个修边方向都标注清楚,使修边模设计时能容易确定。3,修边模结构的确定在制定拉深件修边工艺时,要考虑到模具结构实现工艺要求的可行性。特别是在采用多个修边方向的修边工序中,实现工艺要求所需的模具结构比较复杂,要初步确定修边模的主要结构。4,修边工序的复合为减少模具数量、提高生产效率,经常在修边工序中进行整形、翻边或冲孔等工序。下面以零件前碰撞梁为例进行修边工艺分析和讲解图 2.23由零件形状和产品轮廓来分析零件如图2.23,首先零件形状比较规则就是标准的一个梁类零件,在保证零件精度和质量以
32、及模具强度的前提下都能够进行垂直修边,在废料排放和工件定位方面来考虑,如果能够一道工序全周修边,废料排出不会出现排出不畅的问题,定位能够在这道工序将平面上的孔位冲出来留着下道工序定位用,同时也能够用零件的侧壁部分进行定位。因此我们工序2/3确定如下:在2/3工序中完成全周轮廓的修边动作,在修边的同时将平面上直径为8和10的4个孔进行冲裁。2.3.2. 废料刀设计因为零件整块废料比较大,周边也不易滑出不适合自动化生产,因此我们在修边工序中须考虑修边废料刀布置当工艺内容确定为全周轮廓修边和冲孔后,接下来最主要的内容就是确定废料刀的数量、间距、位置、角度。废料刀的设置能够依据以下原则去设计:l 一般
33、废料刀的布置以单侧落下为原则,即顺时针或逆时针沿周布置,平面斜角为010.l 废料刀的开角相对于修边线基本调整到直角,与凹曲线相交时,则与模具中心平行l 与操作者相正确废料刀不要指向操作者l 废料刀要避开废料宽的地方布置l 在精度要求高或伸长翻边处不要高废料刀l 应避免刃口相对布置.l 型面倾斜及角部时,废料刀按下图2.24布置图 2.24图 2.25修边线有凸台或凹槽形状时,按下图2.26,不能按上图2.25布置时,废料必须强制落下图 2.26据产品的大小确定废料刀布置要领如图2.27所示:图 2.27其它各种特殊情况包括如下图2.28图 2.28综合以上条件,零件前碰撞梁的修边工艺就确定下
34、来,包括修边线、冲孔位置大小、废料刀的数量、位置、角度都确定如下图 图 2.292.3.3. 修边工艺造型在有一些模具工厂里,工艺部分确定除了修边线、冲孔线、废料刀这些主要元素之外,为了设计和CAM编程的需要还要做一些工艺造型,这些造型主要表示各工作部件(上下刀块、压料体、下凸模)的型面数据。进行这些数据的造型工作依据则主要根据上一工序的数模和各工作部件的标准参数,2/3工序的数据我们则根据前一工序1/3拉延工序的数模来确定。l 下图2.30为下模修边废料刀的造型具体操作方法:结合拉延工艺造型在废料刀处裁剪出废料刀的工作面一般为10-15mm,不需要太多以减少钳工的研磨量,然后接着工作面创立出
35、一个45的斜坡面就可,以便于废料的排出。考虑吃入量则将创立好的废料刀造型往冲压方向的反方向降6mm.图 2.30废料刀造型须结合前工序1/3拉延造型和2/3废料刀曲线来确定,1/3拉延造型确定废料刀的型面部分,2/3废料刀曲线确定废料刀的位置、大小、数量。l 下图2.31为上模修边刀和上模废料刀的造型具体操作方法:结合拉延工艺造型在上模废料刀处裁剪出废料刀的工作面一般为10-15mm,不需要太多以减少钳工的研磨量,然后接着工作面创立出一个45的斜坡面就可,以便于废料的排出。考虑吃入量则将创立好的废料刀造型往冲压方向的反方向降9mm.上模修边刀一样保持工作面的距离后,然后创立出45面的斜坡,吃入
36、量能够做成波浪刃口,以减少噪音和便利修边,在与下模废料刀干涉部分须让开。图 2.31上模修边刀造型须结合前工序1/3拉延造型和2/3修边线来确定,1/3拉延造型确定废料刀的型面部分,2/3修边线确定其位置、大小、数量。作为上模废料刀则是与下模废料刀相对立的,刃口方向为反向。上模刀和下模刀的造型尺寸可依据下图2.32图 2.32 修边刀与废料刀的修边吃入量按下图2.33参数创立图 2.33修边到这里我们所有需要确定的都完成l 对于冲孔部分,有两种情况:垂直冲孔和侧冲孔,垂直冲孔因为它与冲压方向平行我们也叫正冲,我们只需要考虑准确的冲孔尺寸和公差就能够了。侧冲孔是指倾斜的孔位我们用CAM来进行冲孔
37、,除了给出准确的冲孔尺寸和公差外,我们还要考虑CAM的角度,有时可能是一个方向的角度,有时是两个方向的角度,一般都取5倍数。3. 零件前风窗下横梁上板工艺分析和设计零件号:5301111材质:BUSD FB料厚:1.0mm图 3.1 图 3.2 图 3.3 图 3.4 图 3.5 图3.1为零件的产品图,图3.2 图3.3 图3.4 图3.5分别为图3.1各部分的细节放大图 以上信息为零件的基本信息,包括零件名称、料厚、材质等,料厚1.0为常规料厚,不需要选用其它特殊的模具材料和结构,材质为BUSD也是宝钢生产常见的冷轧板材,材料拉伸性能优越。从零件的产品形状来分析其工艺性,上图3.1所示意为
38、零件的产品形状。零件形状比较复杂,有多处翻边、翻孔,且孔数量比较多带侧冲孔,且轮廓修边线角度起伏比较大。考虑以上一些因素结合零件的匹配和装配公差,控制成本,我们可将零件工序大致确定如下:1,拉延 2,修边+冲孔 3,翻边+翻孔 4,冲孔+侧冲孔。下面就对各工序进行模具工艺分析和设计。3.1. 1/4拉延件工艺分析与设计 图 3.63.1.1. 拉延冲压方向和工序内容 首先确定零件拉延冲压方向,把零件从车身坐标移动到自己定制的数模中心点,X50,Y0,Z750。零件移动到合适的数模中心后,进行零件拉延方向的确定图 3.7为了更好的优化零件的拉伸性能,体现最好的拉伸效果,在Y方向把零件旋转20,将
39、零件个部分的拉延深度尽量保持一致,为了批量化生产方便,把零件在Z方向旋转90得出零件合适的1/4拉延工序合适的冲压方向。如上图3.7 图 3.83.1.2. 压料面和分模线拉延工序冲压方向确定下来后,接下就是创立零件拉延工序的压料面和分模线。我们由上图3.8取出X,Y方向最大距离的截面,分别为SEC A-A图3.9和SEC B-B图3.11 图 3.9图 3.10图 3.11由上面3.9 3.11的SEC A-A ,SECB-B能够将分模线的距离,压料面的大致形状确定下来。图 3.12左视图中压料面的形状如上图3.12压料面的形状按照零件形状的趋势,然后考虑合适的拉延深度创立而成。前视图中压料
40、面的形状如下图3.13图 3.13 压料面的形状和尺寸确定后,我们可用3D建模软件创立出3D的压料面图 3.14上图3.14就是在UG中创立出的压料面压料面创立出来后,接着从上图3.9 3.11SEC A-A ,SCE B-B 能够确定出分模线的形状,计算分模线时需注意零件的翻边部分需展开到拉延工艺数模上,一些局部考虑到工艺可行性避免起皱、开裂部分所需创立的工艺小造型、余肉。图 3.15上图3.15中的曲线则是我们的分模线,创立分模线时最基本尺寸我们由SEC A-A,SEC B-B来获得,其余部分根据最基本尺寸结合零件的形状和轮廓来进行偏置和延伸来获得,保证在每个截面处都能满足拉延,修边,翻边
41、的要求。3.1.3. 创立工艺补充造型分模线创立好,接下来就能够开始拉延工序工艺补充的创立了。按照以下步骤:1, 将平面上的分模线按冲压方向投影到压料面上如图3.16图 3.162, 将投影好的分模线按照指定的拔模角度拉伸出数模的侧壁面。零件下横梁上板取角度值为10,这一步骤有两个细节需要注意(a,分模线圆角部分,能够不用拉伸特征完成,尽量去用曲面倒圆角实现。B,由于零件形状比较复杂,型面起伏高低差比较大,在型面高的地方我们就能够直接用分模线拉伸出侧壁面,然后再去与产品型面形成相交,但在型面低的部分可能不需要拉伸出侧壁面,直接用零件的轮廓外凸缘面与压料面产生相交)。根据零件的形状和轮廓进行不同
42、的操作,如下图3.17图 3.173, 将零件轮廓外凸缘面与分模线产生的拔模面或压料面产生相交,具体操作是延续产品的原始型面,产生延伸动作。产品最小延伸距离修边线之外保证5-10mm,翻边部分则保证翻边部分展开之后的距离,在局部产品延伸不了的情况能够自行进行辅助面创立达到效果。如图 3.18图 3.184, 局部需要添加几何特征来避免成形缺陷的,如放起皱余肉,防翻边缺料造型等。能够根据零件的形状适当的进行辅助面创立,如图3.19图 3.195, 凹模口R角的创立。具体操作是在压料面和分模线拔模出的侧壁面或产品轮廓面的相交部分产生R角,此值根据零件的拉伸性能来确定,零件下横梁上板取R值为10mm
43、。用3D建模软件中的倒圆角来实现,在局部实现不了倒圆角的情况可经过自行进行辅助面创立达到同样的效果。如下图3.20图 3.206, 凸模R角的创立。具体操作是在分模线拔模出的侧壁面和产品外轮廓延伸后相交的部分产生R角,此值根据零件的拉伸性能来确定,零件下横梁上板取R值为10mm,局部考虑拉伸效果对其进行放大圆角的操作,而且将各种考虑拉伸效果创立出的余肉造型也进行倒圆角动作,在局部实现不了倒圆角的情况可经过自行进行辅助面创立达到同样的效果。如下图3.21,图3.22 图3.23 图3.24 图3.25分别为图3.21中1,2,3,4各部分的细节放大图 图 3.21 图 3.22 图 3.23 图
44、 3.24 图 3.257, 零件内部工艺补充的完成,指零件内部各种形状的孔,包括圆孔和各种异形孔,都要将其封闭起来。同零件外轮廓延伸一样也需要考虑翻边和翻孔部分的修边。如下图3.26所示,图3.27 图3.28分别为图3.26中1,2部分的细节放大图图 3.26 图 3.27 图 3.288, 工艺小特征的完成。包括到底标记和各种工艺造型的修饰,到底标记根据客户要求来确定是在零件上还是废料上,一般无要求我们设置在废料上,注意是要尽量与冲压方向能保证垂直。各种工艺造型,比如说预防起皱所添加的余肉造型,预防开裂将数模凸模R角放大的造型,根据零件的拉伸效果来调整其形状和大小,以达到最佳效果。C/H孔位置一般在零件平面位置上,以做调模定位用。图 3.29 9,完成拉延筋的创立。 拉延筋的具体操作是,从分模线往外偏置25mm,此线就为拉延筋的中心线,然后将此线投影到压料面上,然后在3D建模软件中先创立出基本面,然后对其倒圆角。到此零件下横梁上板拉延工艺造