110kV输电线路零序电流保护设计(2)110303011(1).doc

上传人:赵** 文档编号:48952592 上传时间:2022-10-07 格式:DOC 页数:47 大小:1.84MB
返回 下载 相关 举报
110kV输电线路零序电流保护设计(2)110303011(1).doc_第1页
第1页 / 共47页
110kV输电线路零序电流保护设计(2)110303011(1).doc_第2页
第2页 / 共47页
点击查看更多>>
资源描述

《110kV输电线路零序电流保护设计(2)110303011(1).doc》由会员分享,可在线阅读,更多相关《110kV输电线路零序电流保护设计(2)110303011(1).doc(47页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2022年-2023年建筑工程管理行业文档 齐鲁斌创作辽 宁 工 业 大 学微机继电保护课程设计(论文)题目:110kV输电线路零序电流保护设计(2)院(系): 电气工程学院 专业班级: 电气111 学 号: 110303011 学生姓名: 左钰 指导教师: (签字)起止时间:2014.12.15-2014.12.26I课程设计(论文)任务及评语院(系):电气工程学院 教研室:电气工程及其自动化学 号110303011学生姓名左钰专业班级电气111课程设计(论文)题目110kV输电线路零序电流保护设计(2)课程设计(论文)任务ZT4=50ZT3=50ZT2=10ZG2=16ZT1=10321Z

2、G1=16Z1.CD=40Z0.CD=80Z1.BC=20Z0.BC=40Z0.AB=40AZ1.AB=25DCB系统接线图如图:课程设计的内容及技术参数参见下表设计技术参数工作量,系统中各元件及线路的负序阻抗与正序阻抗相同,其他参数见图。计算最大和最小零序电流,应根据当Z1Z0时,则有;反之,当Z1Z0时,则有。一、整定计算1.计算B母线、C母线、D母线处正序(负序)及零序综合阻抗Z1、Z0。2.计算B母线、C母线、D母线处发生单相或两相接地短路时出现的最大、最小零序电流。3.整定保护1、2、3零序电流I段的定值,并计算各自的最小保护范围。4.当 B母线上负荷变压器始终保持两台中性点都接地运

3、行时,整定保护1、2零序定值,并校验灵敏度。5.整定保护1零序段定值,假定母线D零序过电流保护动作时限为0.5s,确定保护1、2、3零序过电流保护的动作时限,校验保护1零序段的灵敏度。二、硬件电路设计包括CPU最小系统、电流电压数据采集、开关设备状态检测、控制输出、报警显示等部分。三、软件设计说明设计思想,给出参数有效值计算及故障判据方法,绘制流程图或逻辑图。四、仿真验证给出仿真电路及仿真结果,分析仿真结果同理论计算结果的异同及原因。续表进度计划第一天:收集资料,确定设计方案。 第二天:计算综合阻抗和零序电流,零序I段的整定计算。第三天:零序II段、零序III段的整定计算。 第四天:硬件电路设

4、计(最小系统、数据采集、状态检测部分)。第五天:硬件电路设计(控制输出、报警显示部分)。 第六天:软件设计(有效值计算、故障判据)。第七天:软件设计(绘制流程图或逻辑图)第八天:仿真验证及分析。 第九天:撰写说明书。第十天:课设总结,迎接答辩。指导教师评语及成绩平时: 论文质量: 答辩: 总成绩: 指导教师签字: 年 月 日注:成绩:平时20% 论文质量60% 答辩20% 以百分制计算摘 要随着时代的进步,电力系统的规模在不断扩大,用户对电能质量的要求也在不断提高。因此,对继电保护装置本身的要求也越来越高,微机继电保护具备了传统保护所没有的优良特性。本设计首先简要介绍了电力系统微机继电保护的发

5、展、技术构成及其发展方向。其次对硬件、软件的结构做了分析,它的硬件结构核心由P89C51RD和DSP2181组成,CPU完成装置的总启动和人机界面及与外围设备的通信功能,CPU内设总启动元件,启动后开放出口继电器正电源,使得装置具有很高的固有可靠性及安全性。最后本文对装置进行了软件结构设计,对各个模块的功能作了具体介绍本文研究的110kV输电线路微机零序电流保护原理分析与程序设计是由计算机实现的线路保护装置,用三相一次自动重合闸重合方式,采用后加速方式,适用于110kV的输电线路。关键词:微型机保护;110kV输电线路;零序电流;重合闸目 录第1章 绪论11.1 零序电流保护的概况11.2 本

6、文主要内容2第2章 输电线路零序电流保护整定计算32.1 零序电流段整定计算32.1.1 零序电流段动作电流的整定72.1.2 灵敏度校验82.1.3 动作时间的整定112.2 零序电流段整定计算112.3零序电流段整定计算12第3章 硬件电路设计133.1 110KV输电线路零序保护的硬件133.2 CPU最小系统图143.3 数据采集系统153.3.1电压形成回路153.3.2 采样保持和模拟低通滤波163.3.3 多路转换开关和模数转换173.4开关量输入输出系统193.4.1开关量输入输出模块193.4.2开关量输入部分193.4.3开关量输出部分213.5电源模块22第4章 软件设计

7、244.1程序总框图244.2软件结构分析概述264.3中断程序模块264.4各程序的子模块介绍274.4.1初始化274.4.2启动元件284.4.3零序方向电流保护284.5微机保护的算法294.5.1输入为正弦量的算法304.5.2突变量电流算法304.5.3选相方法324.5.4傅里叶级数算法34第5章 实验验证及分析37第6章 课程设计总结39参考文献40V第1章 绪论1.1 零序电流保护的概况与当代新兴科学技术相比,电力系统继电保护是相当古老了,然而电力系统继电保护作为一门综合性科学又总是充满青春活力,处于蓬勃发展中。之所以如此,是因为它是一门理论和实践并重的科学技术,又与电力系统

8、的发展息息相关。它以电力系统的需要作为发展的源泉,同时又不断地吸取相关的科学技术中出现的新成就作为发展的手段。继电保护装置是电力系统的重要组成部分,它在保证系统安全、稳定和经济运行等方面起着非常重要的作用。它在系统发生故障时切除故障设备,对系统安全运行作出贡献,但若不正常动作(包括拒动和误动),则给系统造成的危害也是巨大的。所以对继电保护装置的可靠性(包括安全性和信赖性两个方面)要求很高。信赖性是指不应拒动,安全性是指不应误动。继电保护装置除了在故障的很短时间内动作外,长期是不动作的,因而被喻为电力系统的无声警卫。因此装置的某些缺陷可能不被察觉,从而成为故障时不正确动作的隐患。微型机保护可以实

9、现自我监视和检测,大大提高了装置的安全性。传统的整流型或晶体管型继电保护装置的调试工作量很大,尤其是一些复杂的保护,例如超高压线路的保护设备,调试一套保护常常需要一周,甚至更长的时间。究其原因,这类保护装置都是布线逻辑的,保护的每一种功能都由相应的硬件器件和连线来实现。为确定保护装置是否完好,就需要把所具备的各种功能都通过模拟试验来校核一遍。微机保护则不同,它的硬件是一台计算机,各种复杂的功能是由相应的软件来实现的。换言之,它是用一个只会作几种单调的、简单操作的硬件,配以软件,把许多简单操作组合而完成各种复杂功能的。因而只要用几个简单的操作就可以检验微型机的硬件是否完好。或者说如果微型机硬件有

10、故障,将会立即表现出来。如果硬件完好,对于已成熟的软件,只要程序和设计时一样,就必然会达到设计的要求,用不着逐台作各种模拟试验来检验每一种功能是否正确。微型机保护装置具有自诊断功能,对硬件各部分和存放在EPROM中的程序不断地进行自动检测,一旦发现异常就会发出报警。通常只要给上电源后没有警报,就可确认装置是完好的。所以对微机保护装置可以说几乎不用调试,从而可大大减轻运行维护的工作量。1.2 本文主要内容1.计算B母线、C母线、D母线处正序(负序)及零序综合阻抗Z1、Z0。2计算B母线、C母线、D母线处发生单相或两相接地短路时出现的最大、最小零序电流。3整定保护1、2、3零序电流I段的定值,并计

11、算各自的最小保护范围。4当 B母线上负荷变压器始终保持两台中性点都接地运行时,整定保护1、2零序定值,并校验灵敏度。5整定保护1零序段定值,假定母线D零序过电流保护动作时限为0.5s,确定保护1、2、3零序过电流保护的动作时限,校验保护1零序段的灵敏度。6. 用计算机实现线路保护装置,用三相一次自动重合闸重合方式,采用后加速方式。第2章 输电线路零序电流保护整定计算2.1 零序电流段整定计算系统接线图如图2.1所示: 图2.1 系统接线图利用大接地电流系统中发生接地短路时出现零序电流等的特点,可以构成反映零序电流大小的多段式零序电流保护。零序电流一般为四段式,即零序电流保护第、段。零序电流第、

12、段为线路接地故障的主保护,第、为线路接地故障的后备保护。一、计算各母线处正序(负序)和零序综合阻抗、(1)当、均投入运行时: 图2.2 、均投入运行时等值正序(负序)网络图图2.3、均投入运行时等值零序网络图如图2.2所示,与串联后和,再和如图2.3所示,串联。所以,综合阻抗计算如下: B母线: C母线: D母线: (2)当、投入运行时:如图2.4所示,如图2.5所示,所以,综合阻抗如下所求:B母线: C母线:D母线:图2.4、投入运行时等值正序(负序)网络图图2.5、投入运行时等值零序网络图(3)当、投入运行时如图2.6所示,如图2.7所示, 所以,综合阻抗所求如下:图2.6、投入运行时等值

13、正序(负序)网络图图2.7、投入运行时等值零序网络图B母线: C母线:D母线:(4)当、投入运行时图2.8、投入运行时等值正序(负序)网络图图2.9、投入运行时等值零序网络图 如图2.8所示, 如图2.9所示, 其综合阻抗所求如下:B母线:C母线:D母线:二、计算B、C、D母线处发生单相或两相接地短路时出现的最大、最小零序电流(1)当、均投入运行时B母线:C母线:D母线:(2)当、投入运行时B母线:C母线:D母线:(3)当、投入运行时B母线:C母线:D母线:(4)当、投入运行时B母线:C母线: D母线:2.1.1 零序电流段动作电流的整定一、保护1零序电流I段(1)、运行取两相接地短路(2)

14、、运行取两相接地短路 最大运行方式为:、运行保护1的I段动作电流为:二、保护2零序电流I段(1)、运行取单相接地短路 (2) 、运行取单相接地短路 最大运行方式为:、运行保护2的I段动作电流为:三、保护3零序电流I段(1) 、运行取单相接地短路 (2) 、运行取单相接地短路 最大运行方式为:、运行保护3的I段动作电流为:2.1.2 灵敏度校验一、保护1的最小保护范围计算设 (),则(1)、运行 取单相接地短路得,满足灵敏度要求(2)、运行 取单相接地短路得,满足灵敏度要求 根据、,最小运行方式为:、运行 保护1的I段最小可以保护线路AB全长的33.7%二、保护2的最小保护范围计算设 (),则(

15、1)、运行 取单相接地短路得,满足灵敏度要求(2)、运行 取单相接地短路得,满足灵敏度要求 根据、,最小运行方式为:、运行 保护2的I段最小可以保护线路BC全长的16%三、保护3的最小保护范围计算设 (),则(1)、运行 若 ,则取单相接地短路得,满足灵敏度要求此时,与矛盾所以,取两相接地短路得,满足灵敏度要求(2)、运行若 ,则取单相接地短路得,满足灵敏度要求此时,与矛盾所以,取两相接地短路得,满足灵敏度要求 根据(1)、(2),最小运行方式为:、运行 保护3的I段最小可以保护线路CD全长的34.68%2.1.3 动作时间的整定因为零序电流I段是无时限零序电流保护,不必加延时元件,所以其整定

16、的动作延时为0即,保护1、2、3的动作时间:2.2 零序电流段整定计算保护1的段与保护2的I段配合,保护1的分支系数 灵敏度校验:最小运行方式为、运行流过保护1的最小零序电流 不满足灵敏度要求所以,保护1的段与保护2的段配合,保护2的分支系数满足灵敏度要求所以,保护1的段动作电流:保护1的段动作时间与保护2的段动作时间配合:2.3零序电流段整定计算保护1的段与保护2的段配合灵敏度校验:最小运行方式为、运行作为近后备:满足灵敏度要求作为远后备:满足灵敏度要求已知母线D零序过电流保护动作时限为0.5s所以保护1的段零序电流保护的动作时间与保护2的段动作时间配合:第3章 硬件电路设计3.1 110K

17、V输电线路零序保护的硬件 保护的硬件构成由四部分组成:数据采集系统(或称模拟量输入系统):数据采集系统包括电压形成、模拟滤波、采样保持、多路转换以及模拟转换,其功能为完成将模拟输入量准确转换为所需的数字量。主系统:处理器(CPU)、只读存储器(ROM)或闪存内存单元(FLASH)、随机存取储存器(RAM)、定时器、并行以及串行接口等。其功能为执行编制好的程序,以完成各种继电保护测量、逻辑和控制功能。开关量(数字量)输入/输出系统,并行接口(PIA或PIO)、光电隔离器件及有触点的中间继电器等组成,其功能为完成各种保护的出口跳闸、信号、外部接点输入及人机对话及通信等功能。电源模块:其功能为保护装

18、置提供工作电压。一般常采用开关稳压电源或DC/DC电源模块。其提供数字系统5、24、+15、-15V电源。其构成图3.1所示: 图3.1 硬件机构图3.2 CPU最小系统图本设计中的89C51的最小系统包括89C51单片机,6264可编程I/O接口,晶振电路,按键复位电路。CPU最小系统图如图3.2 图3.2 CPU最小系统1.复位电路:无论是在单片机刚开始接上电源时,还是运行过程中发生故障都需要复位。复位电路用于将单片机内部各电路的状态恢复到一个确定的初始值,并从这个状态开始工作。单片机的复位条件:必须使其RST引脚上持续出现两个(或以上)机器周期的高电平。单片机的复位形式:上电复位、按键复

19、位。上电复位和按键复位电路。2.时钟电路单片机工作时,从取指令到译码再进行微操作,必须在时钟信号控制下才能有序地进行,时钟电路就是为单片机工作提供基本时钟的。单片机的时钟信号通常有两种产生方式,内部时钟方式和外部时钟方式:内部时钟方式是在单片机XTAL1和XTAL2引脚上跨接上一个晶振和两个稳频电容,可以与单片机片内的电路构成一个稳定的自激振荡器。晶振的取值范围一般为024MHz,常用的晶振频率有6MHz、12 MHz、11.0592 MHz、24 MHz等。一些新型的单片机还可以选择更高的频率。外接电容的作用是对振荡器进行频率微调,使振荡信号频率与晶振频率一致,同时起到稳定频率的作用,一般选

20、用2030pF的瓷片电容。外部时钟方式则是在单片机XTAL1引脚上外接一个稳定的时钟信号源,它一般适用于多片单片机同时工作的情况,使用同一时钟信号可以保证单片机的工作同步3.3 数据采集系统数据采集系统(模拟量输入系统)主要包括电压形成、模拟滤波、采样保持(S/H)、多路转换(MPX)以及模数转换(A/D),其功能为完成将模拟输入量准确地转换为所需的数字量,如图3.3所示:电压形成前置低通滤波采样保持多路转换器A/D转换模拟信号输入 图3.3数据采集系统3.3.1电压形成回路本文研究的110KV输电线路零序电流保护装置将由二次电流互感器转换来的电流信号通过如图3.4所示的电路转换为mA级的电流

21、信号;将由二次电压互感器转换来的电压信号(100V)通过如图3.5所示的电路也转换为可供模数转换部分时用的电压,这样做的优点是可以使得元件小型化。再讲mA级的电流信号经过如图3.3所示的电路,进行放大处理转换为电压信号,作为A/D转换的输入信号。 图3.4电流输入信号电路图3.4中,电阻Z俩端电压也是电阻俩端电压,通过变比1:n,可以求出,由欧姆定理可知,电压所求如公式: 图3.5电压信号输入如图3.5,因为变比为n:1,所以3.3.2 采样保持和模拟低通滤波采样保持电路,又称S/H电路,其作用是在一个极短的时间内测量模拟输入量在该时刻的瞬时值,并在模拟一数字转换器进行转换的期间内保持其输出不

22、变。利用采样保持电路后,可以方便地进行多个模拟量实现同时采样。采样频率是指采样周期的倒数,对保护系统而言,在故障刚发生时,电压、电流信号中可能含有较高的频率分量(如2KHz以上),为防止混淆,频率将不得不用的很高,进而对硬件速度提出过高的要求。实际上,目前大多数的保护反应的是工频量,在这种情况下,可以采用一个前置的低通滤波器将高频分量滤掉,这样就可以降低频率,从而降低对硬件提出的要求,对频率高于二分之一的可以用简单的低通滤波器(如图3.6所示)来滤除高频分量,而对于小于二分之一频率的分量可以用数字滤波器来滤除。 图3.6低通滤波器3.3.3 多路转换开关和模数转换对反应俩个电气量以上的继电保护

23、装置,都要求对各个模拟量同时采样,以准确地获得各个量之间的相位关系,因而要对每个模拟输入量设置一套电压形成、抗混淆低通滤波器采样保持电路。所有采样保持器的逻辑输入端并联后,由定时器同时供给采样脉冲,但由于模数转换器价格相对较贵,通常不是每个模拟量输入通道设一个A/D转换成数字量输入给装置。而是公用一个,中间是通过转换开关MPX切换,轮流由公用的A/D转换成数字量后输入给装置。模拟量1模拟量n电压形成电压形成LPFLPFS/HS/H多路转换开关A/DCPU采样脉冲 图3.7数模转换 模数转换是微机保护的重要元器件,要理解它的工作原理需先了解数模转换器的原理。数字量是用代码按数位的组合起来表示的,

24、每一位代码都有一定的权,即代表一个具体数值。因此,为了将数字量转换成模拟量,然后将代表各位的模拟量相加,即可得到与被转换数字量相当的模拟量,完成了数模转换。如图3.8为一个4位数模转换器的电路图,更多位数的情况与此类似。输出电压为: 图3.8数模转换电路图可见,输出模拟电压正比于控制输入的数字量D。对一般的A/D转换器来说,如果输入电压超过所允许的最大值,就会出现平顶波,这种现象叫溢出,出现小部分平顶波溢出的危害并不是特别严重,因为在装置得到采样值后,还可以经过数字滤波器来对平顶波进行修正,基波相位可以做到基本不受影响,对电流保护和阻抗保护的影响较小。但是,应当指出:不应出现输入量超出允许值时

25、出现零值的现象,这种现象对保护的危害是致命的。如果电流信号出现这种溢出情况,则出口短路可能会被计算成区外短路,导致拒动。避免这种溢出现象的常用方法有: 1,采用类似于逐次逼近方式的A/D转换器 2,在A/D转换器之前采用预先措施 3,调整模拟量回路的增益3.4开关量输入输出系统3.4.1开关量输入输出模块开关量输入输出模块包括开关量输入回路和开关量输出回路,是微型机保护装置的重要组成部分,是连接外部强电和内部弱电的主要通道,其核心是状态信号的隔离输入回路和动作信号的隔离输出回路,主要完成外部开关量引入装置进行处理和将装置内发出的开关信号引出到继电器插件,从而驱动相应的继电器跳闸或告警,达到保护

26、的功能。下面分别介绍开关量输入回路和输出回路的设计。3.4.2开关量输入部分在微机线路保护装置中,通常需要采集断路器状态、隔离开关状态和外部分、合闸等状态信息,这些状态量的采集都是以光电隔离方式输入的,采用光电隔离的主要优点是:输入信号与输出信号在电气上完全隔离,抗干扰能力很强;无触点,耐冲击,寿命长,可靠性高;响应速度快,易与逻辑电平配合使用。 图3.9开关量经光耦输入电路需要采集的输入开关量共8路,分为两组,一组为4路220V开关量输入,另一组为4路24V开关量输入。图3.9 所示开关量通过光电隔离输入电路图。其工作原理是:当外部接点接通时,光电隔离的二极管导通,光电隔离的三极管也导通,其

27、集电极输出低电位;当外部接点断开时,光电隔离的二极管不导通,于是三极管截止,集电极输出高电位,软件读并行口该位的状态,即可知道外部接点的状态。图中二极管起保护作用,用于防止开关量输入回路电源极性接反时将光电耦合器中的发光二极管反向击穿,另一方面二极管还能够加速继电器的返回。电容为抗干扰电容。这样,开关量经过光电耦合器后直接与保护DSP相应的通用IO口相连,光敏三极管的导通和截止完全反映外部接点的状态,带有电磁干扰的外部输入回路与微型机电路之间没有直接电的联系,各种干扰信号不能进入微型机电路部分,从而达到抗干扰的目的。图3.10 是开关量输入电路的部分电路图(只画出220V的一路输入)。在整体电

28、路中,上面4路为220V开关量输入电路,并配有两路220V开关量监视电路;下面4路为24V开关量输入电路,配有两路24V开关量监视电路。监视电路能够实现8路开关量输入信号的开启与停止,从而达到省电目的;同时,配备有自检回路,通过4路开关量监视回路,可以实现8路开关量输入通道的自检功能。 图3.10开关量输入回路(以220V的一路输入量为例)图3.10 的原理为:6JA21为220V开关量控制1端口。当该端口输入为“1时,光电隔离器PTl中发光二极管发光,三极管导通,表现为低电平,可正确对220V开关量输入信号进行采集;当6JA21控制端口输入为“O”时,光电隔离器PT3中发光二极管不导通,同时

29、三极管截止,表现为高阻状态,此时无法采集相应的开关量。这样,就可以将装置的电源停掉,实现省电功能。自检测功能:220V开关量控制2端口6JB21输入为“1”时,光电隔离器PT2中的发光二极管导通发光,三极管导通,220V正电源经导通的三极管,二极管D3进入开关量采集电路中,通过查询开关量输入口6JBl8的状态,用以判断开关量采集电路是否工作正常。3.4.3开关量输出部分相对于开关量输入,开关量输出回路具有更加重要的地位。因为在微型机保护装置中,所有的保护功能最终是通过开关量输出部分来控制继电器动作,驱动断路器跳闸或发出告警信号。如下图为一简单的输出接线图。 图3.11装置开关量输出回路接线图但

30、是,由于开关量输出信号的正确与否关系到整个继电保护装置的可靠性,因此,开关量输出回路必须加上监视回路来监视开关量的状态。开关量输出部分主要包括跳闸出口、重合闸出口以及各种信号出口等。开关量输出部分是对断路器实现控制的出口通道,因此,开关量输出回路需要将CPU输出的小信号放大为大功率信号,从而驱动断路器。另外,为了防止断路器操作过程中产生的瞬时脉冲对微型机保护装置的反馈干扰,还必须对出口通道进行隔离。通过采用光电耦合器与继电器相结合的方法来实现出口信号的隔离与放大。为了提高开关量输出回路的可靠性,在数字输出和继电器之间选用了光电耦合器,提高了抗干扰能力。任何一路的输出均由两个信号通过与非门产生的

31、控制信号所控制,这样就可以有效地抑制干扰产生的误动,可也以在装置出现故障的时候有效地实现闭锁。输出量光耦电路如图3.12所示。 图3.12 输出量光耦电路(只画出一路)输出量光耦电路原理为:6JB24为输出总控制端口,只用当该端口输入为“0”,与非门, U1A输出“1”时,整个开关量输出电路才能正常工作,否则,当该端口输入为“1”时,各开关量输出端口经与非门后均为“1”,光电耦合器不导通,回路被闭锁。在6JB24为“O”的前提下,当跳闸输出端口6JBl4输出为“1”时,经与非门输出为“0”,光电耦合器中发光二极管导通,三极管导通,24V电源经二极管D1至3d26,3d28端口,驱动相应的继电器

32、;同时24V电源经二极管D8至光电耦合器PT8,二级管导通,三级管导通,输出电路监视端口6JA25对电路进行监视。3.5电源模块 图3.13 电源模块原理图电源模理图如图3.13所示。保护系统对电源要求较高,通常这种电源是逆变电源,即将直流电逆变为交流电,再把交流电整流为微型机系统所需的直流电压。将变电所强电系统的直流电源与微型机的弱电系统电源完全隔离开,通过逆变后的直流电源具有极强的抗干扰能力,对来自变电所中因断路器跳合闸等原因产生的强干扰可以完全消除掉。本设计采用的逆变稳压电源的输入电压为直流220V,其输出有5V,供微型机系统使用,12V供数据采集系统使用,24V供继电器回路使用。 第4

33、章 软件设计4.1程序总框图初始化 全面自检告警通信程序上传数据请求置位循环自检查询下传数据要求是否通信要求整组复归下传数据请求置位通信请求置位上传数据请求置位 不通过开始中断通过 参数判断 Y Y保护计数器归零? 出错 N N YYN故障处理程序入口保护程序等待中断 图4.1 软件整体流程图如图4.1所示软件整体流程图。本设计中,采用模块化的设计思想,软件模块主要由主程序模块、中断服务程序模块和故障处理程序模块组成。主程序模块主程序模块包括初始化、全面自检、开放中断与等待中断、数据传输通信等环节。初始化初始化是指保护装置在上电或按下复位键时首先执行的程序,它主要是对DSP芯片的工作方式及参数

34、进行设置,以便在后面的程序中按预定的方案工作。首先F2812对自身的工作环境进行设置,初始化各种寄存器,按照电路设计的输入输出要求,设置每一个端口用作输入还是输出,初始化保护输出的开关量,以保证出口继电器均不动作;初始化DSP采样定时器,控制采样间隔时间等。全面自检对装置的软硬件进行一次全面的自检,包括RAM、FLASH或ROM、各开关量输出通道、程序和定值等,以保证装置在投入使用时处于完好的状态。(1)RAM的读写检查对RAM某一单元写入1个数,再从中读出,并比较两者是否相等。如发现写入与读出的数不一致,说明随机存储器RAM有问题,则转至告警模块。并将告警信息显示在液晶显示屏上。(2)开出自

35、检开出自检主要是检测开出通道是否正常,它是通过硬件开出反馈来检查的依次开出每一路开出量,并从反馈回路检查开出量是否正确。由于受启动继电器的闭锁,所以在开出每一路开出量时,保护并不会误动。(3)整定值检查每套定值在存入EEPROM时,都自动固化若干个校验码。若发现只读存储器EEPROM定值求和码与事先存入的定值和不一致,说明EEPROM有故障,转至告警模块,并将告警信息显示在显示器上。参数刷新在经过全面自检后,应将所有的数据、标志字清零,因为每一个标志代表了一个“软件继电器”和逻辑状态,如果不清零,这些标志将控制程序流程的走向,以致无法达到预期的目的。开放中断与等待中断经过初始化和全面自检后,表

36、明装置的准备工作已经全部就绪,此时,开放中断,将数据采集系统投入工作。可编程的定时器将按照初始化程序规定的采样间隔Ts不断发出采样脉冲,控制各模拟量通道的采样和AD转换,并在每次采样完成后向微型机请求中断,来实时监视和获取电力系统的采样信号。对保护计数器的值进行判断,该计数器用于保护起动元件动作后的6s延时计算。保护计数器不为零,说明在6s延时时间内,则进入等待中断流程;当保护计数器归零时,说明起动元件延时时间到,进入整组复归环节。数据传输通信数据传输通信主要为串口收发数据。串口通信主要完成保护处理CPU4.2软件结构分析概述110KV输电线路零序电流保护装置是由P89C51RD单片机实现的两

37、CPU线路保护装置。装置包括三段零序电流保护及三相一次自动重合闸。装置采用了多单片机并行工作的方式,配置了两个CPU插件,分别完成零序保护及重合闸,另外配置了一块接口板,完成对各保护CPU插件的巡检、人机对话和与系统微型机连机等功能。零序电流保护包括零序I段-III段和不灵敏I段,零序三段均可由控制字整定是否经零序功率方向闭锁。可由控制字控制是否加速II、III段。振荡闭锁采用启动元件动作后短时开放的原理,即启动元件动作后0.15秒内开放保护,若在该时间内I、II段均不动作,则将保护闭锁。零序保护不经振荡闭锁,只受启动元件的控制。三相一次自动重合闸由保护启动或由开关位置不对应启动。4.3中断程

38、序模块在保护装置开中断后,每隔一个Ts,定时器就会发出一个采样脉冲,随即产生中断请求。保护装置先暂停一下系统程序的流程,转而执行一次中断服务程序,以保证对输入模拟量的实时采集,同时,实时地运行一次继电保护的相关功能。中断服务程序主要包括定时采样,电流求和自检,TV断线检查,以及启元件等功能。控制数据采集系统,将8个模拟量输入通道的模拟量输入信号转换成数字量的采样值,然后存入RAM区的相应的地址单元中。采用全波傅氏算法等微型机保护算法对各数字量采样值进行计算。将计算得到的各电力系统参数代入启动元件动作判据中,判断启动元件是否动作。若电力系统正常运行,保护启动元件不启动。系统进入自检程序。首先对每

39、个采样点都检查三相电流之和是否与变压器中性点侧TA引入的零序电流3Io相等,如果不相等,则判定为采样回路出错,进行上传数据请求置位,将相应的报警信息上传给ARM。然后,系统进入TV断线检查模块,依据相应的判据对TV进行断线检查。TV断线判据如下:1负序电压大于8V,负序电流小于0.1A;2正序电压小于30V,相电流差突变量小于0.1A。系统确定TV二次断线时,发出“TV断线”信号,待电压恢复正常后信号复归。在TV断线期间,相应的TV断线标志位置“1”,并通过程序安排闭锁自动重合闸。这时保护将根据整定的控制字决定是否退出与电压有关的保护。经过上述TV断线以及采样通道自检后,若互感器及数据采集系统均无异常,再次判断启动继电器是否动作。如果此时电力系统正常,则中断服务程序执行完毕后就回到主程序中被中断的地址处,继续循环自检。若启动继电器动作,则设置保护计数器的初始值,并通过保护计数器每次循环自减“l”来实现启动元件动作后自保持6s的时间。同时,系统修改中断返回地址和中断返回参数,使系统流程跳转至故障处理程序入口出。在进入中断服务程序后,若启动元件动作,则装置闭锁掉采样通道检查,TV断线检测环节,直接跳转至修改中断返回

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 高考资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁