《深圳龙城龙盛学校初中部人教版七年级下册数学期末压轴难题试卷及答案-百度文库.doc》由会员分享,可在线阅读,更多相关《深圳龙城龙盛学校初中部人教版七年级下册数学期末压轴难题试卷及答案-百度文库.doc(25页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、深圳龙城龙盛学校初中部人教版七年级下册数学期末压轴难题试卷及答案-百度文库一、选择题14的算术平方根是()A2B4CD2在下面的四幅图案中,能通过图案(1)平移得到的是( )ABCD3下列各点中,位于第二象限的是()A(5,2)B(2,5)C(5,5)D(3,2)4下列命题中,假命题是( )A如果两条直线都与第三条直线平行,那么这两条直线也互相平行B在同一平面内,过一点有且只有一条直线与已知直线垂直C两条直线被第三条直线所截,同旁内角互补D两点的所有连线中,线段最短5如图,C为的边OA上一点,过点C作交的平分线OE于点F,作交BO的延长线于点H,若,现有以下结论:;结论正确的个数是( )A1个
2、B2个C3个D4个6下列说法中正确的是()A的平方根是B的算术平方根是C与相等D的立方根是7如图,已知,点在上,连接,作平分交于点,则的度数为( )ABCD8如图,在平面直角坐标系中,A(1,1),B(1,1),C(1,2),D(1,2)把一条长为2017个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A处,并按ABCDA的规律绕在四边形ABCD的边上,则细线另一端所在位置的点的坐标是()A(1,0)B(1,2)C(1,1)D(1,1)二、填空题9的算术平方根是_10在平面直角坐标系中,点A(2,1)关于x轴对称的点的坐标是_11如图,ADBC,BD为ABC的角平分线,DE、DF分
3、别是ADB和ADC的角平分线,且BDF,则A与C的等量关系是_(等式中含有)12如图,将三角板与两边平行的直尺()贴在一起,使三角板的直角顶点C()在直尺的一边上,若,则的度数等于_13如图,把一张长方形纸片沿EF折叠后ED与BC的交点为G,D、C分别在M、N的位置上,若,则_,_14对于这样的等式:若(x+1)5a0x5+a1x4+a2x3+a3x2+a4x+a5,则32a0+16a18a2+4a32a4+a5的值为_15平面直角坐标系中,已知点A(2,0),B(0,3),点P(m,n)为第三象限内一点,若PAB的面积为18,则m,n满足的数量关系式为_16如图,在平面直角坐标系中,一电子蚂
4、蚁按照设定程序从原点出发,按图中箭头所示的方向运动,第1次从原点运动到点,第2次接着运动到点,第3次接着运动到点,第4次接着运动到点,第5次接着运动到点,第6次接着运动到点按这样的运动规律,经过2021次运动后,电子蚂蚁运动到的位置的坐标是_三、解答题17计算: (1)3-(-5)+(-6) (2)18求下列各式中的x:(1); (2); (3)19阅读下列推理过程,在括号中填写理由已知:如图,点、分别是线段、上的点,平分,交于点求证:平分证明:平分(已知)( )(已知)( )( )(等量代换)( )( )( )( )平分( )20如图,在平面直角坐标系中,已知三角形三点的坐标分别为,(1)求
5、三角形的面积;(2)在轴上存在一点,使三角形的面积等于三角形面积,求点的坐标21已知某正数的两个平方根分别是和的立方根是是的整数部分(1)求的值;(2)求的算术平方根二十二、解答题22如图,用两个边长为10的小正方形拼成一个大的正方形.(1)求大正方形的边长?(2)若沿此大正方形边的方向出一个长方形,能否使裁出的长方形的长宽之比为3:2,且面积为480cm2?二十三、解答题23已知,ABCD,点E为射线FG上一点(1)如图1,若EAF25,EDG45,则AED= (2)如图2,当点E在FG延长线上时,此时CD与AE交于点H,则AED、EAF、EDG之间满足怎样的关系,请说明你的结论;(3)如图
6、3,当点E在FG延长线上时,DP平分EDC,AED32,P30,求EKD的度数24已知射线射线CD,P为一动点,AE平分,CE平分,且AE与CE相交于点E(注意:此题不允许使用三角形,四边形内角和进行解答)(1)在图1中,当点P运动到线段AC上时,直接写出的度数;(2)当点P运动到图2的位置时,猜想与之间的关系,并加以说明;(3)当点P运动到图3的位置时,(2)中的结论是否还成立?若成立,请说明理由:若不成立,请写出与之间的关系,并加以证明25【问题探究】如图1,DFCE,PCE=,PDF=,猜想DPC与、之间有何数量关系?并说明理由;【问题迁移】如图2,DFCE,点P在三角板AB边上滑动,P
7、CE=,PDF=.(1)当点P在E、F两点之间运动时,如果=30,=40,则DPC= .(2)如果点P在E、F两点外侧运动时(点P与点A、B、E、F四点不重合),写出DPC与、之间的数量关系,并说明理由(图1) (图2)26如图所示,在三角形纸片中,将纸片的一角折叠,使点落在内的点处.(1)若,_.(2)如图,若各个角度不确定,试猜想,之间的数量关系,直接写出结论.当点落在四边形外部时(如图),(1)中的猜想是否仍然成立?若成立,请说明理由,若不成立,之间又存在什么关系?请说明(3)应用:如图:把一个三角形的三个角向内折叠之后,且三个顶点不重合,那么图中的和是_.【参考答案】一、选择题1A解析
8、:A【分析】依据算术平方根的定义解答即可【详解】4的算术平方根是2,故选:A【点睛】本题考查的是求一个数的算术平方根的问题,解题关键是明确算术平方根的定义2C【分析】平移前后形状与大小没有改变,并且对应点的连线平行且相等的图形即可【详解】解:A、对应点的连线相交,不能通过平移得到,不符合题意;B、对应点的连线相交,不能通过平移得到,不符合题解析:C【分析】平移前后形状与大小没有改变,并且对应点的连线平行且相等的图形即可【详解】解:A、对应点的连线相交,不能通过平移得到,不符合题意;B、对应点的连线相交,不能通过平移得到,不符合题意;C、可通过平移得到,符合题意;D、对应点的连线相交,不能通过平
9、移得到,不符合题意;故选:C【点睛】本题考查了平移变换,解题的关键是熟练掌握平移变换的性质,属于中考常考题型3D【分析】依据位于第二象限的点的横坐标为负,纵坐标为正,即可得到结论【详解】解:位于第二象限的点的横坐标为负,纵坐标为正,位于第二象限的是(3,2),故选:B【点睛】此题考查点的坐标,解题关键在于掌握坐标系中各象限坐标的特征4C【分析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案【详解】A.如果两条直线都与第三条直线平行,那么这两条直线也互相平行,选项A是真命题,故不符合题意;B.在同一平面内,过一点有且只有一条直线与已知直线垂直,选项B是真命题,故不符合
10、题意;C.两条直线被第三条直线所截,同旁内角不一定互补,选项C是假命题,故符合题意;D. 两点的所有连线中,线段最短,选项D是真命题,故不符合题意故选:C【点睛】本题主要考查了命题的真假判断,属于基础题,正确的命题叫真命题,错误的命题叫做假命题,判断命题的真假关键是要熟悉课本中的性质定理5D【分析】根据平行线的性质可得,结合角平分线的定义可判断;再由平角的定义可判断;由平行线的性质可判断;由余角及补角的定义可判断【详解】解:,平分,故正确;,故正确;,故正确;,故正确正确为,故选:D【点睛】本题主要考查平行线的性质,角平分线的定义,垂直的定义,灵活运用平行线的性质是解题的关键6C【分析】根据平
11、方根,立方根,算术平方根的定义解答即可【详解】A的平方根为,故选项错误;B的算术平方根是,故选项错误;C,故选项正确;D的立方根是,故选项错误;故选:C【点睛】本题考查了平方根,立方根,算术平方根的定义,熟练掌握是解题关键7A【分析】由平行线的性质可得,再由角平分线性质可得,利用邻补角可求的度数【详解】解:,平分交于点,故选:A【点睛】本题主要考查平行线的性质及角平分线的定义,解答的关键是熟记并灵活运用平行线的性质8B【分析】根据点、的坐标可得出、的长度以及四边形为长方形,进而可求出长方形的周长,根据细线的缠绕方向以及细线的长度即可得出细线的另一端所在位置【详解】解:,且四边形为长方形解析:B
12、【分析】根据点、的坐标可得出、的长度以及四边形为长方形,进而可求出长方形的周长,根据细线的缠绕方向以及细线的长度即可得出细线的另一端所在位置【详解】解:,且四边形为长方形,长方形的周长,细线的另一端落在点上,即故选:【点睛】本题考查了规律型中点的坐标、长方形的判定以及长方形的周长,根据长方形的周长结合细线的长度找出细线终点所在的位置是解题的关键二、填空题9【分析】直接利用算术平方根的定义得出答案【详解】解:,的算术平方根是:故答案为:【点睛】此题主要考查了算术平方根,正确掌握相关定义是解题关键解析:【分析】直接利用算术平方根的定义得出答案【详解】解:,的算术平方根是:故答案为:【点睛】此题主要
13、考查了算术平方根,正确掌握相关定义是解题关键10(2,1)【分析】平面直角坐标系中任意一点P(x,y),关于x轴的对称点的坐标是(x,y),记忆方法是结合平面直角坐标系的图形记忆,另一种记忆方法是记住:关于x轴的对称点,横坐标不变,纵坐标解析:(2,1)【分析】平面直角坐标系中任意一点P(x,y),关于x轴的对称点的坐标是(x,y),记忆方法是结合平面直角坐标系的图形记忆,另一种记忆方法是记住:关于x轴的对称点,横坐标不变,纵坐标变成相反数【详解】解:点(2,1)关于x轴对称的点的坐标是(2,1),故答案为(2,1)【点睛】熟练掌握关于坐标轴对称的点的坐标特点是本题的解题关键. 关于x轴的对称
14、点,横坐标不变,纵坐标变成相反数关于y轴的对称点,纵坐标不变,横坐标变成相反数11AC+2【分析】由角平分线定义得出ABC2CBD,ADC2ADF,又因ADBC得出A+ABC180,ADC+C180,CBDADB,等量代换得A解析:AC+2【分析】由角平分线定义得出ABC2CBD,ADC2ADF,又因ADBC得出A+ABC180,ADC+C180,CBDADB,等量代换得AC+2即可得到答案【详解】解:如图所示: BD为ABC的角平分线,ABC2CBD,又ADBC,A+ABC180,A+2CBD180,又DF是ADC的角平分线,ADC2ADF,又ADFADB+ADC2ADB+2,又ADC+C1
15、80,2ADB+2+C180,A+2CBD2ADB+2+C又CBDADB,AC+2,故答案为:AC+2【点睛】本题考查了平行线的性质,解题需要熟练掌握角平分线的定义,平行线的性质和等式的性质,重点掌握平行线的性质1235【分析】根据平行线的性质和直角三角形两锐角互余即可求得【详解】故答案为:35【点睛】本题考查了平行线的性质和直角三角形两锐角互余,熟练以上知识是解题的关键解析:35【分析】根据平行线的性质和直角三角形两锐角互余即可求得【详解】故答案为:35【点睛】本题考查了平行线的性质和直角三角形两锐角互余,熟练以上知识是解题的关键1368; 112 【分析】首先根据折叠的性质和平行线的性质求
16、FED的度数,然后根据平角的定义求出1的度数,最后根据平行线的性质求出2的度数【详解】解:延折叠得到,解析:68; 112 【分析】首先根据折叠的性质和平行线的性质求FED的度数,然后根据平角的定义求出1的度数,最后根据平行线的性质求出2的度数【详解】解:延折叠得到,(两直线平行,内错角相等),又,综上,故答案为:68;112【点睛】本题考查了平行线的性质,翻折变换的性质,熟记各性质并准确识图是解题的关键14-1【分析】根据多项式的乘法得出字母的值,进而代入解答即可【详解】解:(x+1)5x5+5x4+10x3+10x2+5x+1,(x+1)5a0x5+a1x4+a2x3+a3x2+解析:-1
17、【分析】根据多项式的乘法得出字母的值,进而代入解答即可【详解】解:(x+1)5x5+5x4+10x3+10x2+5x+1,(x+1)5a0x5+a1x4+a2x3+a3x2+a4x+a5,a01,a15,a210,a310,a45,a51,把a01,a15,a210,a310,a45,a51代入32a0+16a18a2+4a32a4+a5中,可得:32a0+16a18a2+4a32a4+a532+8080+4010+11,故答案为:1【点睛】本题考查了代数式求值,解题的关键是根据题意求得a0,a1,a2,a3,a4,a5的值.15【分析】连接OP,将DPAB的面积分割成三个小三角形,根据三个小
18、三角形的面积的和为18进行整理即可解答【详解】解:连接OP,如图:A(2,0),B(0,3),OA=2,OB=3,解析:【分析】连接OP,将DPAB的面积分割成三个小三角形,根据三个小三角形的面积的和为18进行整理即可解答【详解】解:连接OP,如图:A(2,0),B(0,3),OA=2,OB=3,AOB=90,点P(m,n)为第三象限内一点,整理可得:;故答案为:【点睛】本题考查的是平面直角坐标系中面积的求解,要注意在计算面积的时候,可根据题意适当添加辅助线,帮助自己分割图形16(1617,2)【分析】根据已知提供的数据从横纵坐标分别分析得出横坐标的为1,2,2,4,4,4+1,4+2,4+2
19、,4+4,4+4,每5次一轮,每次比前一次起始多4,这一规律纵坐标为2,0,-解析:(1617,2)【分析】根据已知提供的数据从横纵坐标分别分析得出横坐标的为1,2,2,4,4,4+1,4+2,4+2,4+4,4+4,每5次一轮,每次比前一次起始多4,这一规律纵坐标为2,0,-2,-2,0,每5次一轮这一规律,进而求出即可【详解】解:前五次运动横坐标分别为:1,2,2,4,4,第6到10次运动横坐标分别为:4+1,4+2,4+2,4+4,4+4,第5n+1到5n+5次运动横坐标分别为:4n+1,4n+2,4n+2,4n+4,4n+4,前五次运动纵坐标分别2,0,-2,-2,0,第6到10次运动
20、纵坐标分别为2,0,-2,-2,0,第5n+1到5n+5次运动纵坐标分别为2,0,-2,-2,0,20215=4041,经过2021次运动横坐标为=4404+1=1617,经过2021次运动纵坐标为2,经过2021次运动后,电子蚂蚁运动到的位置的坐标是(1617,2)故答案为:(1617,2)【点睛】此题主要考查了点的坐标规律,培养学生观察和归纳能力,从所给的数据和图形中寻求规律进行解题是解答本题的关键三、解答题17(1)2;(2)-1【分析】(1)利用加减法法则计算即可得到结果;(2)先算乘方和平方根,再算乘法,最后进行加减计算即可得到结果【详解】(1)解:3-(-5)+(-6) =3+5-
21、6解析:(1)2;(2)-1【分析】(1)利用加减法法则计算即可得到结果;(2)先算乘方和平方根,再算乘法,最后进行加减计算即可得到结果【详解】(1)解:3-(-5)+(-6) =3+5-6=2(2)解:(-1)2- =1-4 =1-2=-1【点睛】此题考查了实数的运算,熟练掌握运算法则是解本题的关键18(1);(2)1;(3)-1【分析】(1)根据立方根的定义解方程即可;(2)根据立方根的定义解方程即可;(3)根据立方根的定义解方程即可【详解】解:(1), ,;(2解析:(1);(2)1;(3)-1【分析】(1)根据立方根的定义解方程即可;(2)根据立方根的定义解方程即可;(3)根据立方根的
22、定义解方程即可【详解】解:(1), ,;(2); (3),【点睛】本题考查了利用立方根的含义解方程,熟知立方根的定义是解决问题的关键19见解析【分析】根据平行线的性质,角平分线的定义填写理由即可【详解】证明:平分(已知)(角平分线的定义)(已知)(同位角相等,两直线平行)(两直线平行,内错角相等)(等量代换)(解析:见解析【分析】根据平行线的性质,角平分线的定义填写理由即可【详解】证明:平分(已知)(角平分线的定义)(已知)(同位角相等,两直线平行)(两直线平行,内错角相等)(等量代换)(已知)(两直线平行,同位角相等)(两直线平行,内错角相等)(等量代换)平分(角平分线的定义)【点睛】本题考
23、查了角平分线的定义,平行线的性质与判定,掌握平行线的性质与判定是解题的关键20(1)的面积为5;(2)或【分析】(1)根据割补法可直接进行求解;(2)由(1)可得,进而的面积以点B的纵坐标为高,ON为底,然后可得ON=5,最后问题可求解【详解】解:(1)由图象可解析:(1)的面积为5;(2)或【分析】(1)根据割补法可直接进行求解;(2)由(1)可得,进而的面积以点B的纵坐标为高,ON为底,然后可得ON=5,最后问题可求解【详解】解:(1)由图象可得:;(2)设点,由题意得:,的面积以点B的纵坐标为高,ON为底,即,或【点睛】本题主要考查图形与坐标,熟练掌握点的坐标表示的几何意义及割补法是解题
24、的关键21(1),c=4;(2)4【分析】(1)由题意可得出,得出a的值,代入中得出b的值,再根据即可得出c的值;(2)代入a、b、c的值求出代数式的值,再求算术平方根即可【详解】解:(1)某解析:(1),c=4;(2)4【分析】(1)由题意可得出,得出a的值,代入中得出b的值,再根据即可得出c的值;(2)代入a、b、c的值求出代数式的值,再求算术平方根即可【详解】解:(1)某正数的两个平方根分别是和又的立方根是3又,c是的整数部分(2)故的算术平方根是4【点睛】本题考查的知识点是平方根、算术平方根、立方根、估算无理数的大小,属于基础题目,解此题的难点在于c值的确定,学会用“逼近法”求无理数的
25、整数部分是解此题的关键二十二、解答题22(1)大正方形的边长是;(2)不能【分析】(1)根据已知正方形的面积求出大正方形的面积,即可求出边长;(2)先求出长方形的边长,再判断即可【详解】(1)大正方形的边长是(2)设长方形纸解析:(1)大正方形的边长是;(2)不能【分析】(1)根据已知正方形的面积求出大正方形的面积,即可求出边长;(2)先求出长方形的边长,再判断即可【详解】(1)大正方形的边长是(2)设长方形纸片的长为3xcm,宽为2xcm,则3x2x=480,解得:x=因为,所以沿此大正方形边的方向剪出一个长方形,不能使剪出的长方形纸片的长宽之比为2:3,且面积为480cm2【点睛】本题考查
26、算术平方根,解题的关键是能根据题意列出算式二十三、解答题23(1)70;(2),证明见解析;(3)122【分析】(1)过作,根据平行线的性质得到,即可求得;(2)过过作,根据平行线的性质得到,即;(3)设,则,通过三角形内角和得到,由角平分线解析:(1)70;(2),证明见解析;(3)122【分析】(1)过作,根据平行线的性质得到,即可求得;(2)过过作,根据平行线的性质得到,即;(3)设,则,通过三角形内角和得到,由角平分线定义及得到,求出的值再通过三角形内角和求【详解】解:(1)过作,故答案为:;(2)理由如下:过作,;(3),设,则,又,平分,即,解得,【点睛】本题主要考查了平行线的性质
27、和判定,正确做出辅助线是解决问题的关键24(1);(2),证明见解析;(3),证明见解析【分析】(1)过点作,先根据平行线的性质、平行公理推论可得,从而可得,再根据平行线的性质可得,然后根据角平分线的定义可得,最后根据角的和差即可得;解析:(1);(2),证明见解析;(3),证明见解析【分析】(1)过点作,先根据平行线的性质、平行公理推论可得,从而可得,再根据平行线的性质可得,然后根据角平分线的定义可得,最后根据角的和差即可得;(2)过点作,过点作,先根据(1)可得,再根据(1)同样的方法可得,由此即可得出结论;(3)过点作,过点作,先根据(1)可得,再根据平行线的性质、平行公理推论可得,然后
28、根据角的和差、等量代换即可得出结论【详解】解:(1)如图,过点作,又,且点运动到线段上,平分,平分,;(2)猜想,证明如下:如图,过点作,过点作,由(1)已得:,同理可得:,;(3),证明如下:如图,过点作,过点作,由(1)已得:,即,即,即,即【点睛】本题考查了平行线的性质、平行公理推论、角平分线的定义等知识点,熟练掌握平行线的性质是解题关键25DPC=+,理由见解析;(1)70 ;(2) DPC= ,理由见解析.【解析】(1)过P作PEAD交CD于E,推出ADPEBC,根据平行线的性质得出=DPE,=C解析:DPC=+,理由见解析;(1)70 ;(2) DPC= ,理由见解析.【解析】(1
29、)过P作PEAD交CD于E,推出ADPEBC,根据平行线的性质得出=DPE,=CPE,即可得出答案;(2)化成图形,根据平行线的性质得出=DPE,=CPE,即可得出答案【问题探究】解:DPC=+ 如图,过P作PHDF DFCE,PCE=1=, PDF=2DPC=2+1=+ 【问题迁移】(1)70 (图1) ( 图2) (2) 如图1,DPC= - DFCE,PCE=1=, DPC=1-FDP=1-DPC= - 如图2,DPC= -DFCE,PDF=1= DPC=1-ACE=1-DPC= - 26(1)50;(2)见解析;见解析;(3)360.【分析】(1)根据题意,已知,可结合三角形内角和定理
30、和折叠变换的性质求解;(2)先根据折叠得:ADE=ADE,AED=A解析:(1)50;(2)见解析;见解析;(3)360.【分析】(1)根据题意,已知,可结合三角形内角和定理和折叠变换的性质求解;(2)先根据折叠得:ADE=ADE,AED=AED,由两个平角AEB和ADC得:1+2等于360与四个折叠角的差,化简得结果;利用两次外角定理得出结论;(3)由折叠可知1+2+3+4+5+6等于六边形的内角和减去(BGF+BFG)以及(CDE+CED)和(AHL+ALH),再利用三角形的内角和定理即可求解【详解】解:(1),A=A=180-(65+70)=45,AED+ADE =180-A=135,2
31、=360-(C+B+1+AED+ADE)=360-310=50;(2),理由如下由折叠得:ADE=ADE,AED=AED,AEB+ADC=360,1+2=360-ADE-ADE-AED-AED=360-2ADE-2AED,1+2=2(180-ADE-AED)=2A;,理由如下:是的一个外角.是的一个外角又(3)如图由题意知,1+2+3+4+5+6=720-(BGF+BFG)-(CDE+CED)-(AHL+ALH)=720-(180-B)-(180-C)-(180-A)=180+(B+C+A)又B=B,C=C,A=A,A+B+C=180,1+2+3+4+5+6=360【点睛】题主要考查了折叠变换、三角形、四边形内角和定理注意折叠前后图形全等;三角形内角和为180;四边形内角和等于360度