《你能计算出人民大会堂前的这样一个石柱的占地面积吗.doc》由会员分享,可在线阅读,更多相关《你能计算出人民大会堂前的这样一个石柱的占地面积吗.doc(4页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、你能计算出人民大会堂前的这样一个石柱的占地面积吗?怎样才能计算广场的面积呢师总结:大家真是太聪明了,通过一节课的学习,你们的用数学知识解决问题的本领更强了,希望大家用数学的眼光到生活中找一找我们用今天学习的圆的面积公式,还能能解决那些实际问题。好吗?3稿教案教学反思教学反思: 通过试讲觉得学生对活动的设计比较喜欢,思维活跃,教案设计基本满意。结合自己课堂教学体验反思和网友和学校领导的悉心帮助,总结出以下不足:1、教学语言“迟钝”。我平时讲课领导总说我语速快,可这次今天试讲后领导首先说的一句就是:今天的语速有点慢了。分析原因是:修改完完成3稿教案,做完课件已经凌晨了3点,6点起床,9点30分试讲
2、,思路虽然清晰,但教案熟悉内化的时间太短, 语言组织不够自然,加上有领导和摄象,所以不自觉的紧张。2、复习占用时间不当。 复习设计方式不够合理,教师的演示过程加上学生的叙述占用了宝贵的时间,现在反思,这一环节如此“精细”是在浪费课堂的宝贵时间。3、探究没有充分放手。在探究圆的面积公式推导过程中,孩子的兴趣是很高的,但在学生汇报的环节,我总是担心孩子,在孩子操作演示的时候给予帮助。造成了放手不够,造成了引导过度的现象。出现了探究一直是在我的控制下进行。4、没给问题爆发的机会。教学中很关注“R2” 在运算中容易出现的问题,所以在教学时直接提醒学生这一运算顺序,本以为做的很好,但现在反思,我的“先预
3、防错误出现”的做法,失去了让学生经历在错误中反思的珍贵体验,也就是说由于我的“认真”,在计算应用环节孩子们失去了精彩的错误分析与错误反思。这也是我们学生为什么学过知识遗忘快的根结所在,没有充分理解,怎么能记得好呢?参赛的过程,是雪燕子学飞的过程。我在一次次反思中发现自己的不足,看到自己的幼稚,发现并改正自己教学不足的过程是痛并快乐的。有以上的反思要谢谢网友们的帮助,区教研员和学校领导的引导。由于自己数学教学的水平有限,也许我的反思还有不当的地方。请大家继续热心指导。修改稿:一、 创设情境。提出问题(投影出示P16中草坪喷水插图)师:同学们,这是现代化农田里的一个自动喷水头,喷射的距离为5米,你
4、们谁知道喷水头喷射一周,我们得到了一个什么样的图形?学生回答:圆形课件演示喷射过程,理解什么是圆的面积你们想知道这样一个自动喷水头它喷射一周浇灌的农田面积是多少吗?这节课我们就来学习如何求喷水头转动一周浇灌的面积有多大。(板书:圆的面积)第二环节估计圆面积大小的两种设计哪个好呢?方案一:出示课件: 用边长等于半径的小正方形透明塑料片,直接度量圆面积,(如图)观察后得出圆面积比4个小正方形小,好象又比3 个小正方形大一些。初步猜想:圆的面积相当于r2的3倍多。 由此看出,要求圆的精确面积通过度量是无法得出的。三、 探索规律1、 由旧知引入新知我们在学习推导几何图形的面积公式时,总是把新的图形经过
5、分割、拼合等办法,将它们转化成我们熟悉的图形, 大家还记得我们以前学习的平行四边形、三角形、梯形面积分别是由哪些图形的面积推导来的吗?(学生回答后教师课件演示平行四边形,三角形,梯形面积推导过程。)今天我们能不能也用这样的方法推导出圆面积的计算公式呢?这一探索性地设问,使学生产生悬念,引入深思。它与得出圆面积计算公式后的验证,前后呼应,融为一体。使学生对圆面积与r2的倍数关系,获得十分鲜明的表象,而且有助于避免与圆周长的计算公式(C=2r)产生混淆。 2、 探索圆面积公式 (1) 学生操作师:请大家拿出准备好的16等分的圆,和小组同学一起剪一剪,拼一拼,看看能拼成一个什么图形?并考虑你拼成的图
6、形与原来的圆形有什么关系?(同学们开始操作,教师巡视) (2)指名汇报初步汇报:你们把圆转换成了什么图形?(在学生说的同时教师课件演示)学生可能出现的4种情况:(3)操作反思小组内拿出32等分的圆形,剪一剪,拼成一个长方形,和用16等分的圆拼成的长方形比较你发现了什么? 32等份后拼成的图形更接近于长方形如果把一个圆等分成64份、128份拼成的长方形会怎样呢?(微机显示)(圆等分的份数越多,拼成的图形越接近于长方形。)(4)转化思考:近似长方形的长相当于圆的哪一部分?怎样用字母表示?(圆周长的一半,C/2=r),它的宽是圆的哪一部分?(半径r)课件演示(5)观察汇报: 你能否由长方形的面积公式
7、得到圆形面积公式呢?并说出你的理由。 因为拼成的长方形的长也就是圆形周长的一半,长方形的宽就是圆形的半径。而长方形面积=长宽,那么那么圆形面积=圆周长的1/2半径即可。(生说,教师板书)用字母怎么表示圆面积公式呢? 指导学生自己动手,并通过微机演示,把一个圆剪拼成近似的长方形,从长方形面积公式,推出圆面积计算公式。这样,可以培养学生初步的空间想象力,也可以渗透以直代曲的辩证唯物主义观点。 (6)拓展探究:根据上面的由长方形的面积计算公式推导出来圆的面积计算公式,你是否受到了启发?刚才还有的同学把圆转化成了平行四边形,等腰三角形或者是梯形,你能试着用你转化成的那个图形的面积公式推出圆的面积公式吗
8、?小组探究尝试,然后汇报,师根据汇报演示:1把圆16等份分割后拼插成近似的平行四边形,平行四边形的底相当于圆周长的四分之一(C/4=r/2),高等于圆半径的2倍(2r),所以S=r/22r=r2 。2圆16等份分割后可拼插成近似的等腰三角形。三角形的底相当于圆周长的1/4,高相当于圆半径的4倍,所以S=1/22r/4r=r2。3把圆分割后,可拼成近似的等腰梯形。梯形上底与下底的和就是圆周长的一半,高等于圆半径的2倍,所以S=1/2r2r=r2(7)总结:无论我们把圆拼成什么样的近似图形,都能推导出圆的面积公式S=r2,验证了原来猜想的正确。说明在求圆的面积时,都要知道半径。引导学生通过多次不同
9、的实验,采用转化的方法,利用等积变形把圆面积转化成近似的长方形、等腰三角形和等腰梯形,从而推导出圆面积计算公式。同时,利用计算机的演示,化静为动,化虚为实,帮助学生把抽象的内容具体化,进一步加深对圆面积公式推导过程的理解。(8)升华:今天我们探究出了圆的面积计算公式,真了不起,在人们没有总结出这个公式的时候, 如何计算圆的面积,是各国数学家共同关心的问题。老师这里有一段小故事,大家一起来读一读。内容:刘徽在校注九章算术时,创立了一种新的数学方法 “割圆术”来进行有关圆的计算。九章算术中已有圆面积的计算公式,但没有说明是怎么来的,刘徽为此苦苦思索,有一次他看见石匠在加工石料,石匠把一块方石砍去四
10、角,就变成八角形的石头,再去掉八个角又变成了十六角形,这样一凿一斧地干下去,一块方形石料就被加工成一根光滑的圆柱了。刘徽因此得到启发:原来圆与直线是可以相互转化的。他认为一个圆的内接正多边形的边数越多,其周长就会越接近于圆的周长。同时,通过求圆内接正多边形的边长和圆的直径之比,可以越来越精确地求得圆周率(即圆周与直径之比),这就是所谓“割圆术”。“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣。”这句话简明扼要地概括了刘徽割圆术的实质。同时,刘徽在这里还用了“极限”这个数学概念,今天我们知道“极限”是高等数学的基础。后来,祖冲之和他的儿子祖恒,利用割圆术,得出了3.1415
11、9263.1415927 。没有前人这样艰苦的努力,我们现在就不可能精确地计算出圆的面积和周长,一切与圆有关的计算无疑也要大打折扣了。读了这个故事,你想说点什么?生说感受。看来生活中处处有数学,我们要培养自己热爱数学,善于观察的良好习惯哦。下面我们就一起来动脑筋解决以下下面的问题。四:拓展应用1.填空:()圆的周长计算公式为(),圆的周长计算公式为()。()一个圆的半径是3厘米,求它的周长,列式(),求它的面积,列式()。()一个圆的周长是分米,这个圆的直径是()分米,面积是()平方分米。.判断:()半径是厘米的圆,周长和面积相等()让孩子知道得数虽然相同,但计量单位不同,不能进行比较。()一
12、个圆形纽扣的半径是厘米,它的面积是多少?列式:XX平方厘米。()。此题在计算的时候把看作,而()直径相等的两个圆,面积不一定相等。()()一个圆的半径扩大倍,面积也扩大倍。()()两个不一样大的圆,大圆的圆周率比小圆的圆周率大。()3、根据下面的条件,求圆的面积。 r=6厘米 d =0.8厘米4、实际应用:一块圆形铁板的半径是3分米,它的面积是多少平方分米?5、要求一张圆形纸片的面积,需测量哪些有关数据?比比看谁先做完,谁想的办法多?(1)可测圆的半径,根据S=r2求出面积。(2)可测圆的直径,根据S=(d/2)2求出面积。(3)可测圆的周长,根据S=(c/2)2求出面积。师:经过一节课的学习,你们能计算出喷水头转动一周可以浇灌多大面积的农田了吗? (学生独立解答,指名回答) 实践练习:圆形的物体生活中随处可见,公园的露天广场是个圆形,怎样才能计算广场的面积呢?让学生讨论,你有哪些方案?并留给学生课后去实践。这样,使学生意犹未尽,感到课虽尽,但疑未了,为下一课已知周长求面积埋下伏笔。九年义务教育六年制小学数学第十册