《供配电系统毕业设计.doc》由会员分享,可在线阅读,更多相关《供配电系统毕业设计.doc(58页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、供配电系统毕业设计522020年4月19日文档仅供参考摘要本论文主要是对小型工厂供配电系统的电气部分进行设计。工厂由户外引入10kV的高压电源,经过工厂变电所降为220/380V的低压电,直接供给工厂车间的动力系统和照明系统。在选择电气设备之前,先对工厂负荷进行计算,确定工厂总的负荷容量,同时在低压母线侧进行无功功率的补偿,以提高功率因数。根据补偿后的负荷容量,选择工厂变电所变压器的容量和台数,然后确定工厂采用的供电系统,选择合适的车间配电方案,画出供配电系统主接线图。高压一次设备、低压一次设备和导线截面积选择时,都必须满足电路正常条件下和短路故障条件下工作的要求。电气设备不但要满足在短路故障
2、条件下的工作要求,还必须按最大可能的短路故障时的动稳态度和热稳态度进行校验,以判断设备是否满足工作要求。电路发生三相短路时的短路电流电流最大,计算三相短路电流,以进行设备的校验。最后,进行继电保护和防雷接地,来提高系统的安全性和可靠性。关键词:负荷计算,三相短路,主接线,继电保护AbstartThis thesis is mainly to the small factory power supply system of the electric part design. The factory from outdoor into 10 kv high-voltage power supply
3、, through the factory substation reduced to 220/380 v low voltage electric, direct supply factory workshop of power system and lighting system.In the selection of electrical equipment, before the factory load calculation, determine the factory total load capacity, and at the same time, in the low vo
4、ltage bus side for reactive power compensation, in order to improve power factor. According to the compensation after the load capacity, choose the factory substation transformer capacity and sets, and then determine the factory power supply system, choose appropriate workshop distribution plan, dra
5、w for distribution system main wiring .High pressure a equipment, low pressure a equipment and wire .Keywords: load calculation, three phase short circuit, Lord, relaying protection 目录摘要I目录III第1章 绪论1第2章 电力负荷及其计算22.1 负荷分级及供电电源措施22.1.1 工厂电力负荷的分级22.1.2 各级负荷的供电措施22.2 工厂计算负荷的确定22.2.1 负荷计算的目的和意义22.2.2 负荷计
6、算的方法32.3 无功功率补偿42.3.1功率因数42.3.2 无功补偿的选择5第3章 变压器的选择及其电气主接线63.1 变压器的选择63.1.1 电力变压器及其分类63.1.2 电力变压器的连接组别63.1.3 变压器台数和容量的选择63.1.4电力变压器的校验73.2 工厂变配电所的主接线图83.2.1 电气主接线的概况83.2.2 车间和小型工厂变电所的主接线图93.2.3 本工厂变电所主接线的确定14第4章 设备选择与校验164.1 导线的选择与校验164.1.1 车间导线截面及配电箱的选择164.1.2 车间导线的校验214.2 高压一次设备的选择与校验234.2.1 一次设备及其
7、分类234.2.2 一次设备的选择244.2.3 一次设备的校验26第5章 继电保护与防雷接地295.1 工厂的继电保护295.1.1 继电保护的选择295.1.2 继电保护的整定及计算295.2 工厂的防雷与接地30总结32参考文献33致谢34第1章 绪论电能是现代工业生产的主要能源和动力。电能既易于由其它形式的能量转换而来,又易于转换为其它形式的能量以供应用。电能的输送和分配既简单经济,又便于控制、调节和测量,有利于实现生产自动化。因此,电能在现代工业生产及整个国民经济生活中应用极为广泛。一般中小型工厂的电压进线电压为6-10kV。电能先经高压配电所集中,在由高压配电线路将电能分送到各车间
8、变电所,或者高压配电线路供给给高压用电设备。车间变电所内装设有电力变压器,将6-10kV的高压降为一般低压用电设备所需的电压(220/380V),然后由低压配电线路将电能分送给各用电设备。对于大型工厂及其某些电源进线电压为35 kV及以上的中型工厂,一般经过两次降压,也就是电源进厂后,先经总降压变电所,有大容量的电力变压器将35kV及以上的电源电压降为6-10kV的配电电压,再经过高压配电线路或高压配电所将电能送到各个车间变电所,最后经变压器降为一般低压用电设备所需的电压。有的35kV进线的工厂,只经一次降压,及35kV线路直接引入靠近负荷中心的车间变电所,经车间变电所的配电变压器直接降为低压
9、用电设备所需电压。这种配电方式称为高压深入负荷中心的直配方式。这样能够省去一级中间变压,从而简化了供电系统,节约有色金属,降低电能损耗和电压损耗,提高供电质量。然而这要根据厂区环境条件是否满足35kV架空线路深入负荷中心的“安全走廊”要求而定,否则不宜采用,以确保供电安全。对于总供电容量不超过1000kV的小型工厂,一般只设一个降压变电所,将6-10kV电压降为低压用电设备所需的电压(220/380V)。如果工厂所需容量不大于160kVA时,一般采用低压电源进线,工厂只需设一个低压配电间。本厂属于中小型工厂,采用10kV供电电源,在金工车间东侧1020m处有一座10kV配电室,先用1km的架空
10、线路,后改为电缆线路至本厂变电所,将6-10kV的高压降为一般低压用电设备所需的电压(220/380V),然后由低压配电线路将电能分送给各用电设备。第2章 电力负荷及其计算2.1 负荷分级及供电电源措施2.1.1 工厂电力负荷的分级工厂的电力负荷,按GB 50052-1995供配电系统设计规范规定,根据对供电可靠性及中断供电在政治、经济上造成的损失或影响的程度进行分级,负荷能够分为一级负荷、二级负荷、三级负荷。 一级负荷 符合下列条件之一的,为一级负荷 1)中断供电,将造成人身伤亡的负荷; 2)中断供电,将在政治、经济上造成重大损失的负荷; 3)中断供电,将影响有重大政治、经济意义的用电单位的
11、正常工作的负荷。在一级负荷中,当中断将发生中毒、爆炸和火灾等情况的负荷,以及特别重要场所不允许中断的负荷,应视为特别重要的负荷。 二级负荷 符合下列条件之一的,为二级负荷 1)中断供电,将在政治上、经济上造成较大损失的负荷; 2)中断供电,将影响重要用电单位的正常工作的负荷。 三级负荷 不属于一、二级负荷者为三级负荷。2.1.2 各级负荷的供电措施 一级负荷的供电措施 一 级负荷应有两个独立电源供电,当一个电源发生故障时,另一个电源应不至于同时受到损坏,以维持供电;而且当一个电源中断供电时,另一个电源应能承担本用户的全部一级负荷设备的供电。一级负荷用户的变配电室内的高低压配电系统,应采用单母线
12、分段的主结线形式,分列运行并互为备用。一级负荷设备应采用双电源供电,并在最末一级配电盘(箱)处设置自动切换装置。一级负荷中特别重要的负荷,除上述两个电源外,还必须增设应急电源。 二级负荷的供电措施 二级负荷应有两个电源供电,即应有两回路供电。当发生电力变压器故障或线路常见故障时不至于中断供电(或中断后能立即回复)。 三级负荷的供电措施 三级负荷对供电无特殊要求,可采用单回路市电供电。但应使配电系统简洁可靠,尽量减少配电级数,低压配电级数一般不超过四级,而且应在技术经济合理的情况下,尽量减少电压偏差和电压波动。2.2 工厂计算负荷的确定2.2.1 负荷计算的目的和意义计算负荷是一个假想的持续负荷
13、,其热效应与同时间内实际变动负荷所产生的热效应相等。在供配电系统中,以30min的最大计算负荷作为选择电气设备的依据,并认为只要电气设备能承受该负荷的长期作用,即可在正常情况下长期运行。一般将这个最大计算负荷简称计算负荷Pc。负荷计算的目的是: 计算变配电所内变压器的负荷电流及视在功率,作为选择变压器容量的依据。 计算流过各主要电气设备(断路器、隔离开关、母线、熔断器等)的负荷电流,作为选择这些设备的依据。 计算流过各条线路(电源进线、高低压配电线路等)的负荷电流,作为选择这些线路电缆或导线截面的依据。 计算尖峰负荷,用于保护电器的整定计算和校验电动机的启动条件。 为电气设计提供技术依据。计算
14、负荷是工程设计中按照发热条件选择导线和电气设备的依据。计算负荷是确定供电系统、选择变压器容量、电气设备、导线截面和仪表量程的依据,也是整定继电保护的重要依据。计算负荷确定的是否正确,直接影响到电器和导线的选择是否经济合理。正确进行负荷计算是供电设计的前提,也是实现供电系统安全、经济运行的必要手段。如果计算负荷确定的过大,将使电器和导线电缆选得过大,造成投资和有色金属的浪费,而变压器负荷率较低运行时,也将造成长期低效率运行。如果计算负荷确定的过小,又将使电器和导线处于过负荷运行,增加电能损耗,产生过热,导致绝缘过早老化甚至产生火灾,造成更大的经济损失。因此,正确确定计算负荷具有很大的意义。2.2
15、.2 负荷计算的方法在已知用电设备的情况下,负荷计算有需要系数法、二项式法和利用系数法;在未知用电设备的情况下,负荷计算有负荷密度法、单位指标法和住宅用电量指标法。 需要系数法用设备功率乘以需要系数,直接求出计算负荷。这种方法比较简便,应用广泛,特别适用于配变电所的负荷计算。 利用系数法采用利用系数求出最大负荷班的平均负荷,再考虑设备台属和功率差异的影响,乘以与有效台数有关的最大系数的计算负荷。这种方法的理论根据是概率论和数理统计,因而计算结果比较接近实际,但因利用系数的实测与统计较困难,在电气设计中一般不用。 二项式法在设备组容量之和的基础上,考虑若干容量最大设备的影响,采用经验系数进行加权
16、求和法计算负荷。 负荷密度法当已知某建筑面积负荷密度时,某建筑的平均负荷可按下式计算 Pav =A(kW)式中:负荷密度(kW/m2) A某建筑面积(m2)在建筑方案设计阶段,可采用建筑面积负荷密度法进行负荷估算。在建筑施工阶段设计时,可采用需要系数法进行复核。2.3 无功功率补偿工业与民用用电设备中,有大量设备的工作需要经过向系统吸收感性的无功功率来建立交变的磁场,这使系统输送的电能容量中无功功率的成分增加,在系统变配电设备及输送线路规格一定的情况下,直接影响到有功功率的输送。电网中的电力负荷如电动机、变压器等,大部分属于感性负荷,在运行过程中需向这些设备提供相应的无功功率。在电网中安装并联
17、电容器等无功补偿设备以后,能够提供感性负载所消耗的无功功率,减少了电网电源向感性负荷提供、由线路输送的无功功率,由于减少了无功功率在电网中的流动,因此能够降低线路和变压器因输送无功功率造成的电能损耗,这就是无功补偿。2.3.1功率因数 功率因数低对供配电系统的影响功率因数低是无功功率大的表现,无功功率大会对系统造成如下影响:1)使配电设备的容量增加:在三相交流系统中,电流和有功功率的关系式是: 式(2.10)其中有功功率是系统向用电设备提供的,要转化为其它形式能量的功率,这部分功率是不能减少的。因此在电压一定时,功率因数越小,即无功分量越大,则电流越大。若要承受较大的电流,系统电气设备的容量必
18、然要加大,这就会增加系统成本,使电气设备利用率降低。2)使供电系统的损耗增加:从供配电系统功率损耗计算式中不难看出,经过系统的电流增加,系统上的功率损耗也会增加。3)使电压损失增加:线路电流越大,电压损失也就越大。4)使发电机效率降低:系统中负荷对无功功率需求量增大时,发电机必须增发相应的无功功率去平衡,这样就降低了效率。 提高功率因数的意义在用电设备中绝大部分为感性负荷,使用电单位功率因数小于1。为了保证供电质量和节能,充分利用电力系统中发配电设备的容量,减小供电线路的截面,减小电网的功率损耗、电能损耗,减小线路的电压损失,必须提高用电单位的功率因数。对用户的补偿容量在全国供电规则中已有规定
19、:“无功电力应就地平衡,用户应在提高用电自然功率应属的基础上,设计和装置无功补偿设备,并做到随其负荷和电压变动及时投入和切除,防止无功电力倒送,用户在当地供电局规定的电网高峰时的功率因数,应达到下列规定:高压供电的用户和高压供电装有负荷调整电压装置的电力用户,功率因数为0.9以上;其它100kVA(kW)及以上电力用户和大、中型电力排灌站,功率因数为0.85以上。因此,在供配电系统中,必须改变无功功率大小,即提高功率因数,以便提高系统中设备的有效利用率。2.3.2 无功补偿的选择要使供配电系统的功率因数提高,一般可从两个方面采取措施。一是提高用电设备的自然功率因数,自然功率因数是指不用任何补偿
20、装置时的功率因数;一是采取人工补偿的方法使使总功率因数得以提高,总功率因数是指采用了补偿装置后得到的功率因数。 提高自然功率因数的方法:电动机类电气设备的额定功率因数是较高的,一般都在0.85以上,可是当它们在非额定状态下(如轻载)工作时,功率因数和效率都将大幅度降低,对此,主要采用如下措施改进自然功率因数:1)合理选择电动机的型号和规格。2)合理选择变压器的型号和规格,避免因长期轻载运行而造成的功率因数降低。 采用人工补偿提高功率因数的方法:人工补偿方法有发电机补偿、电容器补偿、调相机补偿和静止补偿器补偿,主要有两种,一是采用同步电动机补偿,一是采用并联电容器补偿。1)在供配电系统中一般只有
21、在能使负荷使用要求得以满足的情况下,才采用同步电动机代替异步电动机工作,且同步电动机兼作无功补偿设备,此时无功补偿的调节能够做到平滑的自动调节;专为无功补偿而设的同步电动机称为同步调相机,由于投资和损耗较大,又不便于维护、检修,供配电系统中很少采用这种补偿方式。2) 采用并联电容器补偿是当前供配电系统中普遍采用的一种无功补偿方法,也叫移相电容器静止无功补偿。它具有功损耗小、运行维护方便、补偿容量增减方便、个别电容器的损坏不影响整体使用等特点,但不能实现无级调节。第3章 变压器的选择及其电气主接线3.1 变压器的选择3.1.1 电力变压器及其分类电力变压器是变电所中最关键的一次设备,其主要功能是
22、将电力系统的电能电压升高或降低,以利于电能的合理输送、分配和使用。常见变压器的种类,在中低压供配电系统中,常见的电力变压器有如下几种分类方式: 按相数分类:有三相电力变压器和单相电力变压器。大多数场合使用三相电力变压器,在一些低压单相负载较多的场合,也使用单相变压器。 按绕组导电材料分类:有铜绕组变压器和铝绕组变压器,当前一般采用铜绕组变压器。 按绝缘介质分类:有油浸式变压器和干式变压器两大类。 按绕组联结组别分类:有Yyn0和Dyn11两种。3.1.2 电力变压器的连接组别电力变压器的联结组别,是指变压器一、二次绕组因采取不同的联结方式而形成变压器一、二次侧对应的线电压之间不同相位关系。中压
23、配电变压器有Yyn0,和Dyn11两种常见的联结组,配电变压器用Dyn11联结较之采用Yyn0联结有一下优点: 对Dyn11联结变压器来说,其3n次谐波电流在其三角形接线的一次绕组内形成环流,从而不致注入公共的高压电网中去,这交之一次绕组接成星形接线的Yyn0联结变压器更有利于抑制高次谐波电流。 Dyn11联结变压器的零序阻抗较之Yyn0联结变压器的零序阻抗小的多,从而更有利于低压单相接地故障保护的动作和故障的切除。 当低压侧接用单相不平衡负荷时,由于Yyn0联结变压器要求低压中性线电流不超过低压绕组额定电流的25%,因而严重限制了其接用单相负荷的容量,影响了变压器设备能力的发挥。GB 500
24、52-1995供配电系统设计规范规定,低压为TN及TT系统时,宜与选用Dyn11联结变压器。Dyn11联结变压器的低压侧中性线电流允许达到低压绕组额定电流的75%以上,其承受单相不平衡负荷的能力远比Yyn0联结变压器大。因此,机器厂的电力变压器选择Dyn11联结形式。3.1.3 变压器台数和容量的选择 选择主变压器台数应考虑下列原则:1) 三级负荷一般设一台变压器,但考虑现有开关设备开断容量的限制,所选单台变压器的容量一般不大于1250kVA;当用电负荷所需的变压器容量大于1250kVA时,一般应采用两台或更多台变压器。2) 当季节性或昼夜性的负荷较多时,可将这些负荷采用单独的变压器供电,以便
25、这些负荷不投入使用时,切除相应的供电变压器,减少空载损耗。3) 当有较大的冲击性负荷时,为避免对其它负荷供电质量的影响,可单独设变压器对其供电。4) 当有大量一、二级负荷时,为保证供电可靠性,应设两台或多台变压器。以起到相互备用的作用。5) 在确定变电所住变压器台数时,应考虑负荷的发展,留有一定的余量。 变压器容量的选择1)只装一台主变压器的变电所主变压器容量SN.T应满足全部用电设备总计算负荷S30的需求,即 式(3.1)2) 装有两台主变压器的变电所 每台变压器的容量SN.T应该同时满足以下两个条件: a.任一台变压器单独运行时,宜满足总的计算负荷S30的大约60%-70%的需要,即 式(
26、3.2) b.任一台变压器单独运行时,应满足全部一、二级负荷的要求。即 式(3.3) 车间变电所主变压器的单台容量上限车间变电所主变压器的单台容量,一般不宜大于1000kVA。这一方面是受以往低压开关电器断流能力和短路稳定度要求的限制,另一方面也是考虑到能够使变压器更接近于车间负荷中心,以减少低压配电线路的电能损耗、电压损耗和有色金属消耗量。 适当考虑负荷的发展应适当考虑今后5 电力负荷的增长,留有一定的余地。本工厂的负荷属于三级负荷,而且补偿后可选500kVA的变压器,考虑到今后发展的要求,选择S9-630/10型变压器一台。3.1.4 电力变压器的校验电力变压器的额定容量SN.T是在一定温
27、度条件下的持续最大输出容量。如果安住地点的年平均气温时,则年平均气温每升高1C,变压器容量相应地减少1%,户外电力变压器的实际容量为 式(3.4)对于户内变压器,由于散热条件差,一般变压器室的出风口与进风口间有约15C的温差,从而使处于室内中间的变压器环境温度比户外变压器环境温度要高出大约8C,因此户内变压器的实际容量较之上式所计算的容量还要小8%。对于S9-630/10型变压器,考虑本地年平均气温为23.2C,即年平均气温不等于20C,对于室内变压器,其实际容量为 因此,选择的变压器满足要求。3.2 工厂变配电所的主接线图3.2.1 电气主接线的概况电气主接线图即主电路图,是表示供电系统中电
28、能输送和分配线路的电路图,亦称一次电路图。它的设计,直接关系着全厂电气设备的选择、配电装置的布置、继电保护和自动装置的确定,关系着电力系统的安全、稳定、灵活和经济运行。电气主接线应满足可靠性、灵活性和经济性三方面: 可靠性:为了向用户供应持续、优质的电力,电气主接线首先必须满足这一可靠性的要求。主接线的可靠性的衡量标准是运行实践,要充分地做好调研工作,力求避免决策失误,鉴于进行可靠的定量计算分析的基础数据尚不完善的情况,充分做好调查研究工作显的尤为重要。为了提高主接线的可靠性,选用运行可靠性高的设备是条捷径,这就要兼顾可靠性和经济性两方面,做出切合实际的决定。 灵活性:电气主接线应能适应各种运
29、行状态,并能灵活地进行运行方式的转换。灵活性包括以下几个方面:1)操作的方便性 电气主接线应该在服从可靠性的基本要求条件下,接线简单,操作方便,尽可能地使操作步骤少,以便于运行人员掌握,不致在操作过程中出差错。2)调度的方便性 电气主接线在正常运行时,要根据调度要求,方便的改变运行方式。而且发生事故时,要能尽快地切出故障,故停电时间最短,影响范围最小,不致过多地影响对用户的供电和破坏系统的稳定运行。3)扩建的方便性 对将来要扩建的发电厂和变电站,其主接线必须具有扩建的方便性。 经济性:采用简单的接线方式,少用设备,节省设备上的投资。3.2.2 车间和小型工厂变电所的主接线图 车间变电所的主接线
30、图车间变电所的主接线分两种情况:1) 有工厂总降压变电所或高压配电所的车间变电所其高压侧的开关电器、保护装置和测量仪表等,一般都安装在高压配电线路的首段,即总配电所的高压配电室内,而车间变电所只设变压器室和低压配电室,其高压侧多数不安装开关,或只安装简单的隔离开关、熔断器、避雷器等,如图3.1所示。图3.1 车间变电所高压侧主接线方案a)高压电缆进线,无开关 b)高压电缆进线,装隔离开关 c)高压电缆进线,装隔离开关-熔断器 d)高压电缆进线,装负荷开关-熔断器 e)高压架空进线,装跌开式熔断器和避雷器 f)高压架空进线,装隔离开关-熔断器和避雷器g)高压架空线,装隔离开关-熔断器和避雷器由图
31、能够看出,凡是高压架空进线,变电所高压侧必须装设避雷器,以防雷电波沿着架空线路侵入变电所击毁电力变压器及其它设备的绝缘。而采用高压电缆进线时,避雷器则装设在电缆的首端,而且避雷器的接地端要连同电缆的金属外皮一起接地。此时变压器高压侧一般能够不再装设避雷器。如果变压器高压侧为架空线又经过一段电缆引入时,则变压器高压侧仍应装设避雷器。 2)工厂无总变、配电所的车间变电所工厂内无总降压变电所和高压配电所时,其车间变电所往往就是工厂的降压变电所,其高压侧的开关电器、保护装置和测量仪表等,都必须配备齐全,因此一般要设置高压配电室。在变压器容量较小、供电可靠性要求不高的情况下,就能够不设高压配电室,其高压
32、侧的开关电器就装在变压器室的墙上或电杆上,而在低压侧计量电能,或者其高压柜就装在低压配电室内,在高压侧计量电能。小型工厂变电所的主接线图1)只装有一台主变压器的小型变电所主接线图只装有一台主变压器的小型变电所,其高压侧一般采用无母线的接线。根据其高压侧采用的开关电器不同,有以下三种比较经典的主接线方案。a.高压侧采用隔离开关-熔断器或户外跌开式熔断器的变电所主接线图(图3.2)这种主接线,受隔离开关和开式熔断器切断空载变压器容量的限制,一般只用于500kVA及以下容量的变电所。图3.2 高压侧采用隔离开关-熔断器 图3.3 高压侧采用负荷开关-熔断器或跌开式熔断器的变电所主接线图 或负荷跌开式
33、熔断器的变电所直接线图这种变电所相当简单经济,但供电可靠性不高,当主变压器或高于侧停电检修或发生故障时,整个变电所要停电。由于隔离开关和跌开式熔断器不能带负荷操作,因此变电所送电和停电的操作程序比较复杂,如果稍有疏忽,还容易发生带负荷拉闸的严重事故,而且在熔断器熔断后,更换熔体需一定时间,从而影响供电的可靠性。可是这种主接线简单经济,对于三级负荷的小容量变电所是相当适宜的。b.高压侧采用负荷开关-熔断器或负荷跌开式熔断器的变电所主接线图(图3.3) 由于负荷开关和负荷跌开式熔断器能带负荷操作,从而使变电所停、送电的操作简便灵活得多,也不存在着在带负荷拉闸的危险。但在发生短路故障时,只能是熔断器
34、熔断,因此这种主接线依然存在着在排除短路故障时恢复供电的时间较长的缺点,供电可靠性依然不高,一般也只用于三级负荷的变电所。 - 图3.4 断路器的变电所主接线图 图3.5 变压器变电所主接线图 c.高压侧采用隔离开关-断路器的变电所主接线图(图3.4)这种主接线由于采用了高压断路器,因此变电所的停、送电操作十分灵活方便,而且在发生短路故障时,过电流保护装置动作,断路器会自动跳闸,如果短路故障已经消除,则可立即合闸回复供电。如果配备自动重合闸装置,则供电可靠性更高。可是如果变电所只此一路电源进线时,一般也只用于三级负荷;但如果变电所低压侧有联络线与其它变电所相连时,或另有备用电源时,则可用于二级
35、负荷。如果变电所有两路电源进线,如图3.5所示,则供电可靠性相当提高,可供二级负荷或少量一级负荷。图3.6 高压侧无母线、低压侧单母分段的变电所主接线图2)装有两台主变压器的小型变电所主接线图a.高压无母线、低压单母线分段的变电所主接线图(图3.6) 这种主接线的供电可靠性较高,当任一主变压器或任一电源进线停电检修或发生故障时,该变电所经过闭合低压母线分段开关,即可迅速恢复对整个变电所的供电。如果两台主变压器高压侧断路器装设互为备用的备用电源自动投入装置,则任一主变压器高压侧断路器因电影断电而跳闸时,另一主变压器高压侧的断路器在备用电源自动投入装置作用下自动合闸,恢复整个变电所的供电。这时变电
36、所可供一、二级负荷。图3.7 高压采用单母线、低压单母线分段的变电所主接线b.高压侧采用单母线、低压侧采用单母分段的变电所主接线图(图3.7) 这种主接线适用于装有两台及以上主变压器或具有多路高压出线的变电所,其供电可靠性也较高。任一主变压器检修或发生故障是,经过切换操作,即可迅速恢复对整个变电所的供电。可是高压母线或电源进线进线检修或发生故障时,整个变电所仍要停电。这时只能供电给三级负荷。如果有与其它变电所相连的高压或低压联络线时,则可供一、二级负荷。c.高低压侧均采用单母线分段的变电所主接线图(图3.8) 这种主接线的两段高压母线,在正常时能够接通运行,也能够分段运行。任一台主变压器或任一
37、路电源进线停电检修或发生故障时,经过切换操作,均可迅速恢复整个变电所的供电。因此,其供电可靠性相当高,可供一、二级负荷。图3.8 高低压侧均为单母线分段的变电所主接线图3.2.3 本工厂变电所主接线的确定 本工厂为三级负荷,供电可靠性要求不高,因此选择高压侧采用隔离开关-断路器的变电所主接线图,主接线图见附录A 第4章 设备选择与校验4.1 导线的选择与校验4.1.1 车间导线截面及配电箱的选择 选择配电箱中各路的熔体额定电流。根据设备明细表中各设备的容量,依据熔断器的选择方法和原则,可得出各路的熔体额定电流。 根据已选出的各路熔体额定电流,并预留1-2路(将来增加用电设备时可不更换分电箱)。
38、确定线路数和熔断器电流相适应的分电箱。 根据已选出的各路熔体电流及其敷设方式、环境温度等,依据导线及电线管得选择方法和原则,可选出相应的导线及电线管。 引入配电箱分干线截面的选择。由于每小分电箱所接的设备台数不多,因此分干线的计算电流应按二项式法计算。这样才能照顾到大容量设备对计算机电流的影响。例如:1号分电箱所接设备是设备1设备4设备容量:对于大批量生产的金属冷加工机床电动机,其二项式系数:b=0.14;c=0.5;x=5; 。5台最大容量电动机的设备容量:对于的电动机,其冲击电流,其额定电流尖峰电流: 根据熔体额定电流,且即选熔断器时应满足。选,即RT0-100/80的熔断器。选干线截面时
39、,应留有余量,以备负荷发展。干线导线有两部分组成:一部分是敷设在车间的明敷部分,按明敷设选导线;另一部分是从配电箱引到干线小于2m要加保护措施,采用穿管敷设,应按穿管导线选择导线。35C时每相的BLX型导线线芯截面积为16mm的单芯线的允许载流量为按发热条件,相线截面选为16mm,而中性线截面按0.5A选,选10mm。选BLX-500-(3*16+1*10)明敷设。35C时每相的BLX型导线线芯截面积为35mm的4根单芯线穿钢管时的允许载流量为按发热条件,相线截面选为35mm,而中的性线截面选为0.5A,选25mm。穿线钢管内径查表选为40mm。选BLX500(3*35+1*25)G40,G为
40、钢管代号。熔断器、导线及分电箱的选择如表6.1所示。其它各分电箱选出结果见表6.2至表6.10。表6.1 01号分电箱设备编号Pe/KWI30/AIN.FU/IN.FE/A(RL1)导线截面/mm2电线管直径/mm17.1251550/402.51527.1251550/402.51537.1251550/402.515412.826100/60620分电箱到干线的导线34.17565.89RT0100/80(16)3540注:()内数字表示明敷设导线截面积;表中Pe为设备容量, I30为计算电流, IN.FU为熔断器额定电流。表6.2 02号分电箱设备编号Pe/KWI30/AIN.FU/IN
41、.FE/A(RL1)导线截面/mm2电线管直径/mm56.9251560/502.31569.82060/504.02079.82060/604.02088.72060/604.02098.72060/604.020分电箱到干线的导线43.92568.08RT0100/80(16)3540表6.3 03号分电箱设备编号Pe/KWI30/AIN.FU/IN.FE/A(RL1)导线截面/mm2电线管直径/mm137.1251560/502.515147.1251560/502.515157.1251560/502.515167.1251560/502.515179.22060/604.020189
42、.22060/604.020分电箱到干线的导线46.973.15RT0100/80(16)3550表6.4 04号分电箱设备编号Pe/KWI30/AIN.FU/IN.FE/A(RL1)导线截面/mm2电线管直径/mm1914.333100/8010252013.333100/801025216.9251550/402.5153110.526100/60620分电箱到干线的导线45.0375.8RT0100/80(25)3550表6.5 05号分电箱设备编号Pe/KWI30/AIN.FU/IN.FE/A(RL1)导线截面/mm2电线管直径/mm419.82060/604.020429.82060
43、/604.020438.72060/604.020分电箱到干线的导线28.386.02RT0100/100(25)5050表6.6 06号分电箱设备编号Pe/KWI30/AIN.FU/IN.FE/A(RL1)导线截面/mm2电线管直径/mm448.72060/604.020458.72060/604.020469.32060/604.020479.82060/604.020分电箱到干线的导线36.561.58RT0100/80(16)3540表6.7 07号分电箱设备编号Pe/KWI30/AIN.FU/IN.FE/A(RL1)导线截面/mm2电线管直径/mm2210.12526100/60620237.1251550/402.515247.1251550/402.515257.1251550/402.515分电箱到干线的导线31.560.71RT0100/80(16)3540表6.8 08号分电箱设备编号Pe/KWI30/AIN.FU/IN.FE/A(RL1)导线截面/mm2电线管直径/mm327.1251560/502.515337.1251560/502.515347.1251560/502.515356.9251560/502.515367.1251560/50