江苏省2013届高考数学二轮复习 专题18 附加题22题.doc

上传人:飞**** 文档编号:48696306 上传时间:2022-10-06 格式:DOC 页数:11 大小:928KB
返回 下载 相关 举报
江苏省2013届高考数学二轮复习 专题18 附加题22题.doc_第1页
第1页 / 共11页
江苏省2013届高考数学二轮复习 专题18 附加题22题.doc_第2页
第2页 / 共11页
点击查看更多>>
资源描述

《江苏省2013届高考数学二轮复习 专题18 附加题22题.doc》由会员分享,可在线阅读,更多相关《江苏省2013届高考数学二轮复习 专题18 附加题22题.doc(11页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、江苏省2013届高考数学(苏教版)二轮复习专题18 附加题22题回顾20092012年的考题,离散型随机变量的概率分布与数学期望是考查的重点,但考查难度不大,考查的重点是根据题意分析写出随机变量的分布列.求解过程往往和排列、组合和概率相结合.数学归纳法是用来证明某些与自然数有关的数学命题的一种推理方法,在数学证明中有着广泛的应用.(2012江苏高考)设为随机变量,从棱长为1的正方体的12条棱中任取两条,当两条棱相交时,0;当两条棱平行时,的值为两条棱之间的距离;当两条棱异面时,1.(1)求概率P(0);(2)求的分布列,并求其数学期望E()解(1)若两条棱相交,则交点必为正方体8个顶点中的一个

2、,过任意1个顶点恰有3条棱,所以共有8C对相交棱因此P(0).(2)若两条棱平行,则它们的距离为1或,其中距离为的共有6对,故P(),P(1)1P(0)P()1.所以随机变量的分布列为:01P()则其数学期望E()1.本题考查概率分布、数学期望等基础知识解题的关键是确定的取值(2012扬州期末)口袋中有3个白球,4个红球,每次从口袋中任取一球,如果取到红球,那么继续取球,如果取到白球,就停止取球,记取球的次数为X.(1)若取到红球再放回,求X不大于2的概率;(2)若取出的红球不放回,求X的概率分布与数学期望解:(1)P(X1),P(X2),PP(X1)P(X2).(2)X可能取值为1,2,3,

3、4,5,P(X1),P(X2),P(X3),P(X4),P(X5).X的概率分布列为:X12345PE(X)123452.即X的数学期望是2.已知ABC的三边长为有理数(1)求证:cos A是有理数;(2)求证:对任意正整数n,cos nA是有理数证明(1)由AB,BC,AC为有理数及余弦定理知cos A是有理数(2)用数学归纳法证明cos nA和sin Asin nA都是有理数当n1时,由(1)知cos A是有理数,从而有sin Asin A1cos2A也是有理数假设当nk(k1)时,cos kA和sin Asin kA都是有理数当nk1时,由cos(k1)Acos Acos kAsin A

4、sin kA,sin Asin(k1)Asin A(sin Acos kAcos Asin kA)(sin Asin A)cos kA(sin Asin kA)cos A,由及归纳假设,知cos(k1)A与sin Asin(k1)A都是有理数即当nk1时,结论成立综合可知,对任意正整数n,cos nA是有理数本题主要考查余弦定理、数学归纳法等基础知识,考查推理论证的能力与分析问题、解决问题的能力(2012常州)已知正项数列an中,a11,an11(nN*)用数学归纳法证明:anan1(nN*)证明:当n1时,a21,a1a2,所以n1时,不等式成立;假设当nk(kN*)时,ak0.则当nk1时

5、,ak2ak11ak110,所以nk1时,不等式成立综上所述,不等式anan1(nN*)成立(2012盐城二模)某班级共派出n1个男生和n个女生参加学校运动会的入场仪式,其中男生甲为领队入场时,领队男生甲必须排第一个,然后女生整体在男生的前面,排成一路纵队入场,共有En种排法;入场后,又需从男生(含男生甲)和女生中各选一名代表到主席台服务,共有Fn种选法(1)试求En和Fn;(2)判断ln En和Fn的大小(nN*),并用数学归纳法证明解(1)由题意知EnAA(n!)2,FnCCn(n1)(2)因为ln En2ln n!,Fnn(n1),所以ln E10F12,ln E2ln 4F26,ln

6、E3ln 36F312,因此猜想;当nN*时都有ln EnFn,即2ln n!n(n1)下面用数学归纳法证明2ln n!n(n1)(nN*)当n1时,该不等式显然成立假设当nk(kN*)时,不等式成立,即2ln k!k(k1),则当nk1时,2ln(k1)!2ln(k1)2ln k!2ln(k1)k(k1),要证当nk1时不等式成立,只要证2ln(k1)k(k1)(k1)(k2),即只要证ln(k1)k1.令f(x)ln xx,x(1,),因为f(x)0,所以f(x)在(1,)上单调递减,从而f(x)f(1)10,而k1(1,),所以ln(k1)k1成立,所以当nk1时,不等式也成立综合,当n

7、N*时,都有ln EnFn.本题考查排列组合等基础知识,考查数学归纳法的应用以及综合运用数学知识分析问题和解决问题的能力这类问题以排列组合为主线,利用数学归纳法进行推理利用导数研究函数的单调性证明ln(k1)0)(1)若函数f(x)在x0处取极值,求a的值;(2)如图,设直线x,yx将坐标平面分成、四个区域(不含边界),若函数yf(x)的图象恰好位于其中一个区域内,判断其所在的区域并求对应的a的取值范围;(3)比较3243542 0122 011与2334452 0112 012的大小,并说明理由解:(1)f(x)(2x1)ln(2x1)a(2x1)2x(a0),f(x)2ln(2x1)4a(

8、2x1)1.f(x)在x0处取极值,f(0)4a10.a.(2)因为函数的定义域为,且当x0时,f(0)a0.又直线yx恰好通过原点,所以函数yf(x)的图象应位于区域内,于是可得f(x)x,即(2x1)ln(2x1)a(2x1)2x0,a.令h(x),h(x).令h(x)0,得x.x,x时,h(x)0,h(x)单调递增;x时,h(x)0,h(x)单调递减hmax(x)h.a的取值范围是.(3)由(2)知,函数h(x)在x时单调递减,函数p(x)在x(e,)时单调递减,xln(x1)(x1)ln x.ln(x1)xln x(x1),即(x1)xx(x1)令x3,4,2011,则4334,544

9、5,2 0122 0112 0112 012,又32432334,所以3243542 0122 011(n1)2n2n2;当n2,3时,3n(n1)2n2n2,猜想:当n4时,3n(n1)2n2n2.下面用数学归纳法证明:由上述过程可知,n4时结论成立,假设当nk,(k4)时结论成立,即3k(k1)2k2k2,两边同乘以3得3k13(k1)2k2k2k2k12(k1)2(k3)2k4k24k2,而(k3)2k4k24k2(k3)2k4(k2k2)6(k3)2k4(k2)(k1)60,所以3k12k12(k1)2,即nk1时结论也成立由知当n4时,3n(n1)2n2n2成立综上所述,当n1时,S

10、n(n2)2n2n2;当n2,3时,Sn(n2)2n2n2;当n4时,Sn(n2)2n2n2.7设二项展开式Cn(1)2n1(nN*)的整数部分为An,小数部分为Bn.试用二项式定理推导An和Bn.解:因为Cn(1)2n1C()2n1C()2n2CC,而(1)2n1C()2n1C()2n2CC,得:(1)2n1(1)2n12(C()2n2C()2n4C)N*.而0(1)2n11,所以An(1)2n1(1)2n1,Bn(1)2n1.8(2012苏北四市一模)已知an(1)n(nN*)(1)若anab(a,bZ),求证:a是奇数;(2)求证:对于任意nN*,都存在正整数k,使得an.证明:(1)由二项式定理,得anCCC()2C()3C()n,所以aCC()2C()412C22C,因为2C22C为偶数,所以a是奇数(2)由(1)设an(1)nab(a,bZ),则(1)nab,所以a22b2(ab)(ab)(1)n(1)n(12)n.当n为偶数时,a22b21,存在ka2,使得anab,当n为奇数时,a22b21,存在k2b2,使得anab,综上,对于任意nN*,都存在正整数k,使得an.- 11 -

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 工作报告

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁