玩转压轴题争取满分之备战2020年中考数学解答题高端精品专题01 直角三角形的存在性问题(解析版)(免费下载).doc

上传人:秦** 文档编号:4846358 上传时间:2021-11-16 格式:DOC 页数:56 大小:1.92MB
返回 下载 相关 举报
玩转压轴题争取满分之备战2020年中考数学解答题高端精品专题01 直角三角形的存在性问题(解析版)(免费下载).doc_第1页
第1页 / 共56页
玩转压轴题争取满分之备战2020年中考数学解答题高端精品专题01 直角三角形的存在性问题(解析版)(免费下载).doc_第2页
第2页 / 共56页
点击查看更多>>
资源描述

《玩转压轴题争取满分之备战2020年中考数学解答题高端精品专题01 直角三角形的存在性问题(解析版)(免费下载).doc》由会员分享,可在线阅读,更多相关《玩转压轴题争取满分之备战2020年中考数学解答题高端精品专题01 直角三角形的存在性问题(解析版)(免费下载).doc(56页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、玩转压轴题,争取满分之备战2020年中考数学解答题高端精品专题一 直角三角形的存在性问题【考题研究】这类问题主要是已知直角三角形的一边(即直角三角形的两个点确定),求解第三点。这类问题主要是和动点问题结合在一起,主要在于考查学生的探寻能力和分类研究的推理能力,也是近几年来各市地对学生能力提高方面的一个考查。【解题攻略】解直角三角形的存在性问题,一般分三步走,第一步寻找分类标准,第二步列方程,第三步解方程并验根一般情况下,按照直角顶点或者斜边分类,然后按照三角比或勾股定理列方程有时根据直角三角形斜边上的中线等于斜边的一半列方程更简便解直角三角形的问题,常常和相似三角形、三角比的问题联系在一起如果

2、直角边与坐标轴不平行,那么过三个顶点作与坐标轴平行的直线,可以构造两个新的相似直角三角形,这样列比例方程比较简便在平面直角坐标系中,两点间的距离公式常常用到怎样画直角三角形的示意图呢?如果已知直角边,那么过直角边的两个端点画垂线,第三个顶点在垂线上;如果已知斜边,那么以斜边为直径画圆,直角顶点在圆上(不含直径的两个端点)【解题类型及其思路】当直角三角形存在时可从三个角度进行分析研究:(1)当动点在直线上运动时,常用的方法是 ,三角形相似,勾股定理;(2)当动点在曲线上运动时,情况分类如下,第一当已知点处作直角的方法 ,三角形相似,勾股定理;第二是当动点处作直角的方法:寻找特殊角【典例指引】类型

3、一 【确定三角形的形状】 典例指引1(2019·辽宁中考模拟)已知,m,n是一元二次方程x2+4x+3=0的两个实数根,且|m|n|,抛物线y=x2+bx+c的图象经过点A(m,0),B(0,n),如图所示(1)求这个抛物线的解析式;(2)设(1)中的抛物线与x轴的另一个交点为抛物线的顶点为D,求出点C,D的坐标,并判断BCD的形状;(3)点P是直线BC上的一个动点(点P不与点B和点C重合),过点P作x轴的垂线,交抛物线于点M,点Q在直线BC上,距离点P为个单位长度,设点P的横坐标为t,PMQ的面积为S,求出S与t之间的函数关系式【答案】(1);(2)C(3,0),D(1,4),BC

4、D是直角三角形;(3)【解析】试题分析:(1)先解一元二次方程,然后用待定系数法求出抛物线解析式;(2)先解方程求出抛物线与x轴的交点,再判断出BOC和BED都是等腰直角三角形,从而得到结论;(3)先求出QF=1,再分两种情况,当点P在点M上方和下方,分别计算即可试题解析:解(1),m,n是一元二次方程的两个实数根,且|m|n|,m=1,n=3,抛物线的图象经过点A(m,0),B(0,n),抛物线解析式为;(2)令y=0,则,C(3,0),=,顶点坐标D(1,4),过点D作DEy轴,OB=OC=3,BE=DE=1,BOC和BED都是等腰直角三角形,OBC=DBE=45°,CBD=90

5、°,BCD是直角三角形;(3)如图,B(0,3),C(3,0),直线BC解析式为y=x3,点P的横坐标为t,PMx轴,点M的横坐标为t,点P在直线BC上,点M在抛物线上,P(t,t3),M(t,),过点Q作QFPM,PQF是等腰直角三角形,PQ=,QF=1当点P在点M上方时,即0t3时,PM=t3()=,S=PM×QF=,如图3,当点P在点M下方时,即t0或t3时,PM=(t3)=,S=PM×QF=()=综上所述,S=【举一反三】(2019·淮滨县王店乡教育管理站中考模拟)如图,在平面直角坐标系中,抛物线y=ax2+2x+c与x轴交于A(1,0)B(3,

6、0)两点,与y轴交于点C,点D是该抛物线的顶点(1)求抛物线的解析式和直线AC的解析式;(2)请在y轴上找一点M,使BDM的周长最小,求出点M的坐标;(3)试探究:在拋物线上是否存在点P,使以点A,P,C为顶点,AC为直角边的三角形是直角三角形?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由【答案】(1)抛物线解析式为y=x2+2x+3;直线AC的解析式为y=3x+3;(2)点M的坐标为(0,3);(3)符合条件的点P的坐标为(,)或(,),【解析】分析:(1)设交点式y=a(x+1)(x-3),展开得到-2a=2,然后求出a即可得到抛物线解析式;再确定C(0,3),然后利用待定系数

7、法求直线AC的解析式;(2)利用二次函数的性质确定D的坐标为(1,4),作B点关于y轴的对称点B,连接DB交y轴于M,如图1,则B(-3,0),利用两点之间线段最短可判断此时MB+MD的值最小,则此时BDM的周长最小,然后求出直线DB的解析式即可得到点M的坐标;(3)过点C作AC的垂线交抛物线于另一点P,如图2,利用两直线垂直一次项系数互为负倒数设直线PC的解析式为y=-x+b,把C点坐标代入求出b得到直线PC的解析式为y=-x+3,再解方程组得此时P点坐标;当过点A作AC的垂线交抛物线于另一点P时,利用同样的方法可求出此时P点坐标详解:(1)设抛物线解析式为y=a(x+1)(x3),即y=a

8、x22ax3a,2a=2,解得a=1,抛物线解析式为y=x2+2x+3;当x=0时,y=x2+2x+3=3,则C(0,3),设直线AC的解析式为y=px+q,把A(1,0),C(0,3)代入得,解得,直线AC的解析式为y=3x+3;(2)y=x2+2x+3=(x1)2+4,顶点D的坐标为(1,4),作B点关于y轴的对称点B,连接DB交y轴于M,如图1,则B(3,0),MB=MB,MB+MD=MB+MD=DB,此时MB+MD的值最小,而BD的值不变,此时BDM的周长最小,易得直线DB的解析式为y=x+3,当x=0时,y=x+3=3,点M的坐标为(0,3);(3)存在过点C作AC的垂线交抛物线于另

9、一点P,如图2,直线AC的解析式为y=3x+3,直线PC的解析式可设为y=x+b,把C(0,3)代入得b=3,直线PC的解析式为y=x+3,解方程组,解得或,则此时P点坐标为(,);过点A作AC的垂线交抛物线于另一点P,直线PC的解析式可设为y=x+b,把A(1,0)代入得+b=0,解得b=,直线PC的解析式为y=x,解方程组,解得或,则此时P点坐标为(,).综上所述,符合条件的点P的坐标为(,)或(,).类型二 【确定点的坐标】 典例指引219(2019·江西中考模拟)已知抛物线l:y=ax2+bx+c(a,b,c均不为0)的顶点为M,与y轴的交点为N,我们称以N为顶点,对称轴是y

10、轴且过点M的抛物线为抛物线l的衍生抛物线,直线MN为抛物线l的衍生直线(1)如图,抛物线y=x22x3的衍生抛物线的解析式是 ,衍生直线的解析式是 ;(2)若一条抛物线的衍生抛物线和衍生直线分别是y=2x2+1和y=2x+1,求这条抛物线的解析式;(3)如图,设(1)中的抛物线y=x22x3的顶点为M,与y轴交点为N,将它的衍生直线MN先绕点N旋转到与x轴平行,再沿y轴向上平移1个单位得直线n,P是直线n上的动点,是否存在点P,使POM为直角三角形?若存在,求出所有点P的坐标;若不存在,请说明理由【答案】(1)y=x23, y=x3;(2)y=2x24x+1;(3)存在,P为(,2)或(,2)

11、或(9,2)或(8,2)【解析】分析:(1)衍生抛物线顶点为原抛物线与y轴的交点,则可根据顶点设顶点式方程,由衍生抛物线过原抛物线的顶点则解析式易得,MN解析式易得(2)已知衍生抛物线和衍生直线求原抛物线思路正好与(1)相反,根据衍生抛物线与衍生直线的两交点分别为衍生抛物线与原抛物线的交点,则可推得原抛物线顶点式,再代入经过点,即得解析式(3)由N(0,3),衍生直线MN绕点N旋转到与x轴平行得到y=3,再向上平移1个单位即得直线y=2,所以P点可设(x,2)在坐标系中使得POM为直角三角形一般考虑勾股定理,对于坐标系中的两点,分别过点作平行于x轴、y轴的直线,则可构成以两点间距离为斜边的直角

12、三角形,且直角边长都为两点横纵坐标差的绝对值进而我们可以先算出三点所成三条线的平方,然后组合构成满足勾股定理的三种情况,易得P点坐标本题解析:(1)抛物线y=x22x3过(0,3),设其衍生抛物线为y=ax23,y=x22x3=x22x+14=(x1)24,衍生抛物线为y=ax23过抛物线y=x22x3的顶点(1,4),4=a13,解得 a=1,衍生抛物线为y=x23设衍生直线为y=kx+b,y=kx+b过(0,3),(1,4),衍生直线为y=x3(2)衍生抛物线和衍生直线两交点分别为原抛物线与衍生抛物线的顶点,将y=2x2+1和y=2x+1联立,得,解得 或,衍生抛物线y=2x2+1的顶点为

13、(0,1),原抛物线的顶点为(1,1)设原抛物线为y=a(x1)21,y=a(x1)21过(0,1),1=a(01)21,解得 a=2,原抛物线为y=2x24x+1(3)N(0,3),MN绕点N旋转到与x轴平行后,解析式为y=3,再沿y轴向上平移1个单位得的直线n解析式为y=2设点P坐标为(x,2),O(0,0),M(1,4),OM2=(xMxO)2+(yOyM)2=1+16=17, OP2=(|xPxO|)2+(yOyP)2=x2+4, MP2=(|xPxM|)2+(yPyM)2=(x1)2+4=x22x+5当OM2=OP2+MP2时,有17=x2+4+x22x+5,解得x=或x=,即P(,

14、2)或P(,2)当OP2=OM2+MP2时,有x2+4=17+x22x+5,解得 x=9,即P(9,2)当MP2=OP2+OM2时,有x22x+5=x2+4+17,解得 x=8,即P(8,2)综上所述,当P为(,2)或(,2)或(9,2)或(8,2)时,POM为直角三角形【名师点睛】本题考查了一次函数、二次函数图象及性质,勾股定理及利用其表示坐标系中两点距离的基础知识,特别注意的是:利用其表示坐标系中两点距离,是近几年中考的热点,需学生熟练运用.【举一反三】如图,抛物线y=x2+bx+c的图象与x轴交于A(5,0),B(1,0)两点,与y轴交于点C,抛物线的对称轴与x轴交于点D(1)求抛物线的

15、函数表达式;(2)如图1,点E(x,y)为抛物线上一点,且5x2,过点E作EFx轴,交抛物线的对称轴于点F,作EHx轴于点H,得到矩形EHDF,求矩形EHDF周长的最大值;(3)如图2,点P为抛物线对称轴上一点,是否存在点P,使以点P,A,C为顶点的三角形是直角三角形?若存在,请直接写出点P的坐标;若不存在,请说明理由【答案】(1)y=x24x+5(2);(3)P坐标为(2,7)或(2,3)或(2,6)或(2,1)【解析】试题分析:(1)利用待定系数法即可解决问题;(2)构建二次函数利用二次函数的性质即可解决问题;(3)分三种情形分别求解当由 列出方程即可解决当时,由 列出方程即可解决当 时,

16、由列出方程即可;试题解析:(1)把A(5,0),B(1,0)两点坐标代入 得到 解得 抛物线的函数表达式为 (2)如图1中,抛物线的对称轴x=2, 矩形EFDH的周长 2<0,时,矩形EHDF的周长最大,最大值为 (3)如图2中,设P(2,m)当 解得m=7,P1(2,7).当时, 解得m=3,P2(2,3).当时, 解得m=6或1,P3(2,6),P4(2,1),综上所述,满足条件的点P坐标为(2,7)或(2,3)或(2,6)或(2,1).类型三 【确定动点运动的时间】 典例指引3已知二次函数yax2bx2的图象与x轴交于A,B两点,与y轴交于点C,点A的坐标为(4,0),且当x2和x

17、5时二次函数的函数值y相等(1)求实数a,b的值;(2)如图,动点E,F同时从A点出发,其中点E以每秒2个单位长度的速度沿AB边向终点B运动,点F以每秒个单位长度的速度沿射线AC方向运动当点E停止运动时,点F随之停止运动设运动时间为t秒连接EF,将AEF沿EF翻折,使点A落在点D处,得到DEF.是否存在某一时刻t,使得DCF为直角三角形?若存在,求出t的值;若不存在,请说明理由;设DEF与ABC重叠部分的面积为S,求S关于t的函数关系式【解析】试题分析:(1)根据抛物线图象经过点A以及“当x=2和x=5时二次函数的函数值y相等”两个条件,列出方程组求出待定系数的值(2)首先由抛物线解析式能得到

18、点A、B、C三点的坐标,则线段OA、OB、OC的长可求,进一步能得出AB、BC、AC的长;首先用t 表示出线段AD、AE、AF(即DF)的长,则根据AE、EF、OA、OC的长以及公共角OAC能判定AEF、AOC相似,那么AEF也是一个直角三角形,及AEF是直角;若DCF是直角,可分成三种情况讨论:i)点C为直角顶点,由于ABC恰好是直角三角形,且以点C为直角顶点,所以此时点B、D重合,由此得到AD的长,进而求出t的值;ii)点D为直角顶点,此时CDB与CBD恰好是等角的余角,由此可证得OB=OD,再得到AD的长后可求出t的值;iii)点F为直角顶点,当点F在线段AC上时,DFC是锐角,而点F在

19、射线AC的延长线上时,DFC又是钝角,所以这种情况不符合题意此题需要分三种情况讨论:i)当点E在点A与线段AB中点之间时,两个三角形的重叠部分是整个DEF;ii)当点E在线段AB中点与点O之间时,重叠部分是个不规则四边形,那么其面积可由大直角三角形与小钝角三角形的面积差求得;iii)当点E在线段OB上时,重叠部分是个小直角三角形试题解析:解:(1)由题意得: ,解得:a=,b=(2)由(1)知二次函数为.A(4,0),B(1,0),C(0,2),OA=4,OB=1,OC=2,AB=5,AC=,BC=,AC2+BC2=25=AB2,ABC为直角三角形,且ACB=90°AE=2t,AF=

20、t,.又EAF=CAB,AEFACB,AEF=ACB=90°,AEF沿EF翻折后,点A落在x轴上点D处;由翻折知,DE=AE,AD=2AE=4t,EF=AE=t假设DCF为直角三角形,当点F在线段AC上时:)若C为直角顶点,则点D与点B重合,如图2,AE=AB=t=÷2=;)若D为直角顶点,如图3CDF=90°,ODC+EDF=90°EDF=EAF,OBC+EAF=90°,ODC=OBC,BC=DCOCBD,OD=OB=1,AD=3,AE=,t=;当点F在AC延长线上时,DFC90°,DCF为钝角三角形综上所述,存在时刻t,使得DCF

21、为直角三角形,t=或t=)当0t时,重叠部分为DEF,如图1、图2,S=×2t×t=t2;)当t2时,设DF与BC相交于点G,则重叠部分为四边形BEFG,如图4,过点G作GHBE于H,设GH=m,则BH= ,DH=2m,DB=DB=ADAB=4t5, =4t5,m=(4t5),S=SDEFSDBG=×2t×t(4t5)×(4t5)=;)当2t时,重叠部分为BEG,如图5BE=DEDB=2t(4t5)=52t,GE=2BE=2(52t),S=×(52t)×2(52t)=4t220t+25综上所述: 【名师点睛】此题主要考查的是

22、动点函数问题,涉及了函数解析式的确定、直角三角形以及相似三角形的判定和性质、等腰三角形的性质以及图形面积的解法等综合知识;第二题的两个小题涉及的情况较多,一定要根据动点的不同位置来分类讨论,抓住动点的关键位置来确定未知数的取值范围是解题的关键所在【举一反三】(2018·河北中考模拟)如图,在平面直角坐标系中,A、B为x轴上两点,C、D为y轴上的两点,经过点A、C、B的抛物线的一部分C1与经过点A、D、B的抛物线的一部分C2组合成一条封闭曲线,我们把这条封闭曲线称为“蛋线”已知点C的坐标为(0,),点M是抛物线C2:(0)的顶点(1)求A、B两点的坐标;(2)“蛋线”在第四象限上是否存

23、在一点P,使得PBC的面积最大?若存在,求出PBC面积的最大值;若不存在,请说明理由;(3)当BDM为直角三角形时,求的值【答案】(1)A(,0)、B(3,0);(2)存在SPBC最大值为;(3)或时,BDM为直角三角形【解析】【分析】(1)在中令y=0,即可得到A、B两点的坐标(2)先用待定系数法得到抛物线C1的解析式,由SPBC = SPOC+ SBOPSBOC得到PBC面积的表达式,根据二次函数最值原理求出最大值(3)先表示出DM2,BD2,MB2,再分两种情况:BMD=90°时;BDM=90°时,讨论即可求得m的值【详解】解:(1)令y=0,则,m0,解得:,A(,

24、0)、B(3,0)(2)存在理由如下:设抛物线C1的表达式为(),把C(0,)代入可得,1的表达式为:,即设P(p,), SPBC = SPOC+ SBOPSBOC=<0,当时,SPBC最大值为(3)由C2可知: B(3,0),D(0,),M(1,),BD2=,BM2=,DM2=MBD<90°, 讨论BMD=90°和BDM=90°两种情况:当BMD=90°时,BM2+ DM2= BD2,即=,解得:,(舍去)当BDM=90°时,BD2+ DM2= BM2,即=,解得:,(舍去) 综上所述,或时,BDM为直角三角形【新题训练】1(20

25、19·重庆实验外国语学校初三)如图1,已知抛物线yx+3与x轴交于A和B两点,(点A在点B的左侧),与y轴交于点C(1)求出直线BC的解析式(2)M为线段BC上方抛物线上一动点,过M作x轴的垂线交BC于H,过M作MQBC于Q,求出MHQ周长最大值并求出此时M的坐标;当MHQ的周长最大时在对称轴上找一点R,使|ARMR|最大,求出此时R的坐标(3)T为线段BC上一动点,将OCT沿边OT翻折得到OCT,是否存在点T使OCT与OBC的重叠部分为直角三角形,若存在请求出BT的长,若不存在,请说明理由【答案】(1)yx+3;(2)R(1,);(3)BT2或BT【详解】解:(1)令y=0,即,解

26、得,点A在点B的左侧A(2,0),B(4,0),令x=0解得y=3,C(0,3),设BC所在直线的解析式为y=kx+3,将B点坐标代入解得k=BC的解析式为y-x+3;(2)MQBC,M作x轴,QMHCBO,tanQMHtanCBO,QHQM,MHMQ,MHQ周长MQ+QH+MHQM+QM+MQ3QM,则求MHQ周长的最大值,即为求QM的最大值;设M(m,),过点M与BC直线垂直的直线解析式为,直线BC与其垂线相交的交点,当m2时,MQ有最大值,MHQ周长的最大值为,此时M(2,3),函数的对称轴为x1,作点M关于对称轴的对称点M'(0,3),连接AM'与对称轴交于点R,此时|

27、ARMR|ARM'R|AM',|ARMR|的最大值为AM';AM'的直线解析式为yx+3,R(1,);(3)当TC'OC时,GOTC',OCTOTC',BT2;当OTBC时,过点T作THx轴,OT,BOTBCO,OH,BT;综上所述:BT2或BT2(2019·福建师范大学附属中学初中部初三月考)如图,抛物线ymx2+nx3(m0)与x轴交于A(3,0),B(1,0)两点,与y轴交于点C,直线yx与该抛物线交于E,F两点(1)求点C坐标及抛物线的解析式(2)P是直线EF下方抛物线上的一个动点,作PHEF于点H,求PH的最大值(3)

28、以点C为圆心,1为半径作圆,C上是否存在点D,使得BCD是以CD为直角边的直角三角形?若存在,直接写出D点坐标;若不存在,请说明理由【答案】(1)yx2+2x3;(2);(3)点D的坐标为:(,3)、(,3+)、(1,3)【详解】解:(1)抛物线与x轴交于A(3,0),B(1,0)两点,抛物线的表达式为:,即3a3,解得:a1,故抛物线的表达式为:yx2+2x3;(2)过点P作PMy轴交直线EF于点M,设点P(x,x2+2x3)、点M(x,x),则PHPM,当x时,PH的最大值为;(3)当BCD90°时,如图2左侧图,当点D在BC右侧时,过点D作DMy轴于点M,则CD1,OB1,OC

29、3,tanBCOtanCDMtan,则sin,cos;xDCDcos,同理yD3,故点D(,3);同理当点D(D)在BC的左侧时,同理可得:点D(,3+);当CDB90°时,如右侧图,CDOB1,则点D(1,3);综上,点D的坐标为:(,3)、(,3+)、(1,3)3(2019·四川中考真题)如图,顶点为的二次函数图象与x轴交于点,点B在该图象上,交其对称轴l于点M,点M、N关于点P对称,连接、(1)求该二次函数的关系式(2)若点B在对称轴l右侧的二次函数图象上运动,请解答下列问题:连接,当时,请判断的形状,并求出此时点B的坐标求证:【答案】(1)二次函数的关系式为;(2)

30、是等腰直角三角形,此时点B坐标为;见解析【详解】解:(1)二次函数顶点为设顶点式二次函数图象过点,解得:二次函数的关系式为(2)设直线解析式为:交对称轴l于点M当时,点M、N关于点P对称,即解得:,B,是等腰直角三角形,此时点B坐标为证明:如图,设直线与x轴交于点D、设直线解析式为 解得:直线:当时,解得:,轴垂直平分4(2018·贵州中考真题)如图,已知抛物线的对称轴为直线,且抛物线与轴交于、两点,与轴交于点,其中,.(1)若直线经过、两点,求直线和抛物线的解析式;(2)在抛物线的对称轴上找一点,使点到点的距离与到点的距离之和最小,求出点的坐标;(3)设点为抛物线的对称轴上的一个动

31、点,求使为直角三角形的点的坐标.【答案】(1)抛物线的解析式为,直线的解析式为.(2);(3)的坐标为或或或.【详解】(1)依题意得:,解得:,抛物线的解析式为.对称轴为,且抛物线经过,把、分别代入直线,得,解之得:,直线的解析式为.(2)直线与对称轴的交点为,则此时的值最小,把代入直线得,.即当点到点的距离与到点的距离之和最小时的坐标为.(注:本题只求坐标没说要求证明为何此时的值最小,所以答案未证明的值最小的原因).(3)设,又,若点为直角顶点,则,即:解得:,若点为直角顶点,则,即:解得:,若点为直角顶点,则,即:解得:,.综上所述的坐标为或或或.5(2018·四川中考真题)如图

32、,已知抛物线y=ax2+bx+c的图像经过点A(0,3)、B(1,0),其对称轴为直线l:x=2,过点A作ACx轴交抛物线于点C,AOB的平分线交线段AC于点E,点P是抛物线上的一个动点,设其横坐标为m.(1)求抛物线的解析式; (2)若动点P在直线OE下方的抛物线上,连结PE、PO,当m为何值时,四边形AOPE面积最大,并求出其最大值; (3)如图,F是抛物线的对称轴l上的一点,在抛物线上是否存在点P使POF成为以点P为直角顶点的等腰直角三角形?若存在,直接写出所有符合条件的点P的坐标;若不存在,请说明理由.【答案】(1)y=x2-4x+3.(2)当m=时,四边形AOPE面积最大,最大值为.

33、(3)P点的坐标为 :P1(,),P2(,),P3(,),P4(,). 【详解】(1)如图1,设抛物线与x轴的另一个交点为D,由对称性得:D(3,0),设抛物线的解析式为:y=a(x-1)(x-3),把A(0,3)代入得:3=3a,a=1,抛物线的解析式;y=x2-4x+3;(2)如图2,设P(m,m2-4m+3),OE平分AOB,AOB=90°,AOE=45°,AOE是等腰直角三角形,AE=OA=3,E(3,3),易得OE的解析式为:y=x,过P作PGy轴,交OE于点G,G(m,m),PG=m-(m2-4m+3)=-m2+5m-3,S四边形AOPE=SAOE+SPOE,=

34、×3×3+PGAE,=+×3×(-m2+5m-3),=-m2+m,=(m-)2+,-0,当m=时,S有最大值是;(3)如图3,过P作MNy轴,交y轴于M,交l于N,OPF是等腰直角三角形,且OP=PF,易得OMPPNF,OM=PN,P(m,m2-4m+3),则-m2+4m-3=2-m,解得:m=或,P的坐标为(,)或(,);如图4,过P作MNx轴于N,过F作FMMN于M,同理得ONPPMF,PN=FM,则-m2+4m-3=m-2,解得:x=或;P的坐标为(,)或(,);综上所述,点P的坐标是:(,)或(,)或(,)或(,)6(2019·云南中考

35、模拟)已知,抛物线yx2+bx+c经过点A(1,0)和C(0,3)(1)求抛物线的解析式;(2)在抛物线的对称轴上,是否存在点P,使PA+PC的值最小?如果存在,请求出点P的坐标,如果不存在,请说明理由;(3)设点M在抛物线的对称轴上,当MAC是直角三角形时,求点M的坐标【答案】(1);(2)当的值最小时,点P的坐标为;(3)点M的坐标为、或.【详解】解:将、代入中,得:,解得:,抛物线的解析式为连接BC交抛物线对称轴于点P,此时取最小值,如图1所示当时,有,解得:,点B的坐标为抛物线的解析式为,抛物线的对称轴为直线设直线BC的解析式为,将、代入中,得:,解得:,直线BC的解析式为当时,当的值

36、最小时,点P的坐标为设点M的坐标为,则,分三种情况考虑:当时,有,即,解得:,点M的坐标为或;当时,有,即,解得:,点M的坐标为;当时,有,即,解得:,点M的坐标为综上所述:当是直角三角形时,点M的坐标为、或7(2019·黑龙江中考模拟)如图,在平面直角坐标系中,抛物线y=ax2+2x+c与x轴交于A(1,0)B(3,0)两点,与y轴交于点C(1)求抛物线y=ax2+2x+c的解析式:;(2)点D为抛物线上对称轴右侧、x轴上方一点,DEx轴于点E,DFAC交抛物线对称轴于点F,求DE+DF的最大值;(3)在拋物线上是否存在点P,使以点A,P,C为顶点,AC为直角边的三角形是直角三角形

37、?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由;点Q在抛物线对称轴上,其纵坐标为t,请直接写出ACQ为锐角三角形时t的取值范围【答案】(1)y=x2+2x+3;(2)DE+DF有最大值为;(3)存在,P的坐标为(,)或(,);t【详解】解:(1)设抛物线解析式为y=a(x+1)(x3),即y=ax22ax3a,2a=2,解得a=1,抛物线解析式为y=x2+2x+3;(2)当x=0时,y=x2+2x+3=3,则C(0,3),设直线AC的解析式为y=px+q,把A(1,0),C(0,3)代入得,解得,直线AC的解析式为y=3x+3,如答图1,过D作DG垂直抛物线对称轴于点G,设D(x,

38、x2+2x+3),DFAC,DFG=ACO,易知抛物线对称轴为x=1,DG=x-1,DF=(x-1),DE+DF=x2+2x+3+(x-1)=x2+(2+)x+3-,当x=,DE+DF有最大值为; 答图1 答图2(3)存在;如答图2,过点C作AC的垂线交抛物线于另一点P1,直线AC的解析式为y=3x+3,直线PC的解析式可设为y=x+m,把C(0,3)代入得m=3,直线P1C的解析式为y=x+3,解方程组,解得或,则此时P1点坐标为(,);过点A作AC的垂线交抛物线于另一点P2,直线AP2的解析式可设为y=x+n,把A(1,0)代入得n=,直线PC的解析式为y=,解方程组,解得或,则此时P2点

39、坐标为(,),综上所述,符合条件的点P的坐标为(,)或(,);t8(2019·广西中考模拟)如图,已知抛物线y=ax2+bx+c(a0)的对称轴为直线x=1,且抛物线经过A(1,0),C(0,3)两点,抛物线与x轴的另一交点为B(1)若直线y=mx+n经过B、C两点,求直线BC和抛物线的解析式;(2)设点P为抛物线的对称轴x=1上的一个动点,求使BPC为直角三角形的点P的坐标【答案】(1)y=x+3, y=x22x+3;(2)(1,2)或(1,4)或(1,) 或(1,)【详解】解:(1)抛物线y=ax2+bx+c(a0)的对称轴为直线x=1,且抛物线经过A(1,0),抛物线与x轴的另

40、一交点为B,B的坐标为:(3,0),设抛物线的解析式为:y=a(x1)(x+3),把C(0,3)代入,3a=3,解得:a=1,抛物线的解析式为:y=(x1)(x+3)=x22x+3;把B(3,0),C(0,3)代入y=mx+n得:,解得:,直线y=mx+n的解析式为:y=x+3;(2)设P(1,t),又B(3,0),C(0,3),BC2=18,PB2=(1+3)2+t2=4+t2,PC2=(1)2+(t3)2=t26t+10,若点B为直角顶点,则BC2+PB2=PC2,即:18+4+t2=t26t+10,解之得:t=2;若点C为直角顶点,则BC2+PC2=PB2,即:18+t26t+10=4+

41、t2,解之得:t=4,若点P为直角顶点,则PB2+PC2=BC2,即:4+t2+t26t+10=18,解之得:t1=,t2=;综上所述P的坐标为(1,2)或(1,4)或(1,) 或(1,)9(2019·山东中考模拟)如图,在平面直角坐标系中,ACB=90°,OC=2OB,tanABC=2,点B的坐标为(1,0)抛物线y=x2+bx+c经过A、B两点(1)求抛物线的解析式;(2)点P是直线AB上方抛物线上的一点,过点P作PD垂直x轴于点D,交线段AB于点E,使PE=DE求点P的坐标;在直线PD上是否存在点M,使ABM为直角三角形?若存在,求出符合条件的所有点M的坐标;若不存在

42、,请说明理由【答案】(1)y=x23x+4;(2)P(1,6),存在,M(1,3+)或(1,3)或(1,1)或(1,)【详解】解:(1)B(1,0),OB=1,OC=2OB=2,C(2,0),RtABC中,tanABC=2, , AC=6,A(2,6),把A(2,6)和B(1,0)代入y=x2+bx+c得:,解得:,抛物线的解析式为:y=x23x+4;(2)A(2,6),B(1,0),AB的解析式为:y=2x+2, 设P(x,x23x+4),则E(x,2x+2),PE=DE, x23x+4(2x+2)=(2x+2),x=-1或1(舍), P(1,6);M在直线PD上,且P(1,6),设M(1,

43、y), B(1,0),A(2,6)AM2=(1+2)2+(y6)2=1+(y6)2,BM2=(1+1)2+y2=4+y2, AB2=(1+2)2+62=45,分三种情况:i)当AMB=90°时,有AM2+BM2=AB2,1+(y6)2+4+y2=45, 解得:y=3,M(1,3+)或(1,3);ii)当ABM=90°时,有AB2+BM2=AM2,45+4+y2=1+(y6)2, y=1,M(1,1),iii)当BAM=90°时,有AM2+AB2=BM2,1+(y6)2+45=4+y2, y=,M(1,);综上所述,点M的坐标为:M(1,3+)或(1,3)或(1,1)或(1,)10(2019·山东中考模拟)已知:如图,抛物线y=ax2+bx+c与坐标轴分别交于点A(0,6),B(6,0),C(2,0),点P是线段AB上方抛物线上的一个动点(1)求抛物线的解析式;(2)当点P运动到什么位置时,PAB的面积有最大值?(3)过点P作x轴

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 初中资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁