《专题53:第12章压轴题之实验操作类-备战2021中考数学解题方法系统训练(全国通用)(原卷版).doc》由会员分享,可在线阅读,更多相关《专题53:第12章压轴题之实验操作类-备战2021中考数学解题方法系统训练(全国通用)(原卷版).doc(12页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、53第12章压轴题之实验操作类一、单选题1在数学课上,老师让每个同学拿一张三角形纸片,设,要求同学们利用所学的三角形全等的判定方法,剪下两个全等的三角形下面是四位同学的裁剪方法,如图,剪刀沿着箭头方向剪开,能得到两个全等三角形小纸片的有( )A1种B2种C3种D4种2勾股定理是人类最伟大的科学发现之一,在我国古算书周髀算经中早有记载,如图,以直角三角形的各边为边向外作等边三角形,再把较小的两个等边三角形按如图的方式放置在最大等边三角形内若知道图中阴影部分的面积,则一定能求出图中( )A最大等边三角形与直角三角形面积的和B最大等边三角形的面积C较小两个等边三角形重叠部分的面积D直角三角形的面积3
2、折叠矩形纸片:第一步,如图1,在纸片一端折出一个正方形,再把纸片展开;第二步,如图2,把这个正方形对折,再把纸片展开,得矩形和;第三步,如图3,折出矩形的对角线,并把折到图中所示的处;第四步,如图4,展平纸片,按所得点折出,得矩形.则的值为( )ABCD4将矩形纸片 ABCD 按如图所示的方式折叠,得到菱形 AECF若 AB3,则 BC 的长为( )AB2C1.5D二、填空题5菱形ABCD中,AB=8,B=120°,沿过菱形不同的顶点裁剪两次,再将所裁下的图形拼接,若恰好能无缝,无重叠的拼接成一个矩形,则所得矩形的对角线长为_6如图是长方形纸带,将纸带沿折叠成图,则的度数_度,再沿折
3、叠成图则图中的的度数是度_7如图,在平面直角坐标系中,函数y=2x和y=x的图象分别为直线l1,l2,过点(1,0)作x轴的垂线交l1于点A1,过点A1作y轴的垂线交l2于点A2,过点A2作x轴的垂线交l1于点A3,过点A3作y轴的垂线交l2于点A4,依次进行下去,则点A2017的坐标为_8如图,在三角形纸片中,将纸片沿过点的直线折叠,使点落在斜边上的点处,折痕记为,剪去后得到双层,再沿着过某顶点的直线将双层三角形剪开,使得展开后的平面图形中有一个是平行四边形,则所得平行四边形的面积是_三、解答题9操作与推理:我们知道,任何一个有理数都可以用数轴上一个点来表示,根据下列题意解决问题:(1)已知
4、x=2,请画出数轴表示出x的点:(2)在数轴上,我们把表示数2的点定为基准点,记作点O,对于两个不同的点A和B,若点A、 B到点O的距离相等,则称点A与点B互为基准等距变换点例如图2,点A表示数-1,点B表示数5,它们与基准点O的距离都是3个单位长度,我们称点A与点B互为基准等距变换点记已知点M表示数m,点N表示数n,点M与点N互为基准等距变换点I若m=3,则n= ;II用含m的代数式表示n= ;对点M进行如下操作:先把点M表示的数乘以23,再把所得数表示的点沿着数轴向右移动2个单位长度得到点N,若点M与点N互为基准等距变换点,求点M表示的数;点P在点Q的左边,点P与点Q之间的距离为8个单位长
5、度,对Q点做如下操作: Q1为Q的基准等距变换点,将数轴沿原点对折后Q1的落点为Q2这样为一次变换: Q3为Q2的基准等距变换点,将数轴沿原点对折后Q3的落点为Q4这样为二次变换: Q5为Q4的基准等距变换点,依此顺序不断地重复变换,得到Q5,Q6,Q7Qn,若P与Qn两点间的距离是4,直接写出n的值10如图,矩形ABCD中,ACB=30°,将一块直角三角板的直角顶点P放在两对角线AC,BD的交点处,以点P为旋转中心转动三角板,并保证三角板的两直角边分别于边AB,BC所在的直线相交,交点分别为E,F(1)当PEAB,PFBC时,如图1,则的值为 ;(2)现将三角板绕点P逆时针旋转(0
6、°60°)角,如图2,求的值;(3)在(2)的基础上继续旋转,当60°90°,且使AP:PC=1:2时,如图3,的值是否变化?证明你的结论11阅读材料如图1,三角形中,三角形的面积为10,为底边上一点,垂足分别为,易证解题过程如下:如图,连接,结论:过等腰三角形底边上的一点作两腰的高,两条高线之和等于等腰三角形面积的2倍再除以腰长类比探究如图2,在边长为5的菱形中,对角线,点是直线上的动点,于,于填空:对角线的长是_;菱形的面积是_探究:如图2,当点在对角线上运动时,求的值;拓展:当点在对角线和的延长线上时,请直接写出,之间的数量关系12综合与实践问题背
7、景:综合与实践课上,同学们以两个全等的三角形纸片为操作对象,进行相一次相关问题的研究 下面是创新小组在操作过程中研究的问题, 如图一,ABCDEF, 其中ACB=90°,BC=2,A=30°操作与发现: (1)如图二,创新小组将两张三角形纸片按如图示的方式放置,四边形ACBF的形状是 ,CF= ; (2)创新小组在图二的基础上,将DEF纸片沿AB方向平移至图三的位置,其中点E与AB的中点重合连接CE,BF四边形BCEF的形状是 ,CF= 操作与探究 :(3)创新小组在图三的基础上又进行了探究,将DEF纸片绕点E逆时针旋转至DE与BC平行的位置,如图四所示,连接AF, BF
8、经过观察和推理后发现四边形ACBF也是矩形,请你证明这个结论13下面是小明同学设计的“过直线外一点作已知直线的平行线“的尺规作图过程已知:如图,直线和直线外一点求作:直线,使直线直线作法:如图,在直线上任取一点,作射线;以为圆心,为半径作弧,交直线于点,连接;以为圆心,长为半径作弧,交射线于点;分别以为圆心,大于长为半径作弧,在的右侧两弧交于点;作直线;所以直线就是所求作的直线根据上述作图过程,回答问题:(1)用直尺和圆规,补全图中的图形;(2)完成下面的证明:证明:由作图可知平分,又,(_)(填依据1),直线直线(_)(填依据2)14如图,在每个小正方形的边长为1的网格中,为格点,为小正方形
9、边的中点.(1)的长等于_;(2)点,分别为线段,上的动点,当取得最小值时,请在如图所示的网格中,用无刻度的直尺,画出线段,并简要说明点和点的位置是如何找到的(不要求证明).15实践操作:第一步:如图1,将矩形纸片沿过点D的直线折叠,使点A落在上的点处,得到折痕,然后把纸片展平第二步:如图2,将图1中的矩形纸片沿过点E的直线折叠,点C恰好落在上的点处,点B落在点处,得到折痕,交于点M,交于点N,再把纸片展平 问题解决:(1)如图1,填空:四边形的形状是_;(2)如图2,线段与是否相等?若相等,请给出证明;若不等,请说明理由;(3)如图2,若,求的值16综合与实践在线上教学中,教师和学生都学习到
10、了新知识,掌握了许多新技能例如教材八年级下册的数学活动折纸,就引起了许多同学的兴趣在经历图形变换的过程中,进一步发展了同学们的空间观念,积累了数学活动经验实践发现:对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展平;再一次折叠纸片,使点A落在EF上的点N处,并使折痕经过点B,得到折痕BM,把纸片展平,连接AN,如图(1)折痕BM (填“是”或“不是”)线段AN的垂直平分线;请判断图中ABN是什么特殊三角形?答: ;进一步计算出MNE °;(2)继续折叠纸片,使点A落在BC边上的点H处,并使折痕经过点B,得到折痕BG,把纸片展平,如图,则GBN °;拓展延伸:(
11、3)如图,折叠矩形纸片ABCD,使点A落在BC边上的点A'处,并且折痕交BC边于点T,交AD边于点S,把纸片展平,连接AA'交ST于点O,连接AT求证:四边形SATA'是菱形解决问题:(4)如图,矩形纸片ABCD中,AB10,AD26,折叠纸片,使点A落在BC边上的点A'处,并且折痕交AB边于点T,交AD边于点S,把纸片展平同学们小组讨论后,得出线段AT的长度有4,5,7,9请写出以上4个数值中你认为正确的数值 17将一个矩形纸片放置在平面直角坐标系中,点,点,点E,F分别在边,上沿着折叠该纸片,使得点A落在边上,对应点为,如图再沿折叠,这时点E恰好与点C重合,
12、如图()求点C的坐标;()将该矩形纸片展开,再折叠该矩形纸片,使点O与点F重合,折痕与相交于点P,展开矩形纸片,如图求的大小;点M,N分别为,上的动点,当取得最小值时,求点N的坐标(直接写出结果即可)18折纸是一种许多人熟悉的活动近些年,经过许多人的努力,已经找到了多种将正方形折纸的一边三等分的精确折法,下面探讨其中的一种折法:(综合与实践)操作一:如图1,将正方形纸片ABCD对折,使点A与点D重合,点B与点C重合,再将正方形纸片ABCD展开,得到折痕MN;操作二:如图2,将正方形纸片ABCD的右上角沿MC折叠,得到点D的对应的点为D;操作三:如图3,将正方形纸片ABCD的左上角沿MD折叠再展
13、开,折痕MD与边AB交于点P;(问题解决)请在图3中解决下列问题:(1)求证:BPDP;(2)AP:BP ;(拓展探究)(3)在图3的基础上,将正方形纸片ABCD的左下角沿CD折叠再展开,折痕CD与边AB交于点Q再将正方形纸片ABCD过点D折叠,使点A落在AD边上,点B落在BC边上,然后再将正方形纸片ABCD展开,折痕EF与边AD交于点E,与边BC交于点F,如图4试探究:点Q与点E分别是边AB,AD的几等分点?请说明理由19问题情境在综合实践课上,同学们以“正方形和直线的旋转”为主题分组开展数学探究活动,已知正方形ABCD,直线PQ经过点A,并绕点A旋转,作点B关于直线PQ的对称点E,直线DE
14、交直线PQ于点F,连结AE,BE操作发现(1)如图1,设PAB=25°则ADF= °(2)“梦想小组”的同学们发现,BEF的度数是一个定值,这个值为 (3)“创新小组”的同学们发现,线段AB、DF、EF之间存在特殊的数量关系,请写出这一关系式,并说明理由:拓展应用(4)如图2,当直线PQ在正方形ABCD的外部时,“进取小组”的同学们发现(3)的结论仍然成立,并提出新问题;若DF=3,EF=4,直接写出正方形ABCD的边长20如图,将一条长为60cm的卷尺铺平后折叠,使得卷尺自身的一部分重合,然后在重合部分(阴影处)沿与卷尺边垂直的方向剪一刀,此时卷尺分为了三段,若这三段长度由短到长的比为1:2:3,则折痕对应的刻度有几种可能