2020年中考数学备考优生百日闯关第9关 以二次函数与直角三角形问题为背景的解答题(解析版)(免费下载).docx

上传人:秦** 文档编号:4845781 上传时间:2021-11-16 格式:DOCX 页数:57 大小:1.41MB
返回 下载 相关 举报
2020年中考数学备考优生百日闯关第9关 以二次函数与直角三角形问题为背景的解答题(解析版)(免费下载).docx_第1页
第1页 / 共57页
2020年中考数学备考优生百日闯关第9关 以二次函数与直角三角形问题为背景的解答题(解析版)(免费下载).docx_第2页
第2页 / 共57页
点击查看更多>>
资源描述

《2020年中考数学备考优生百日闯关第9关 以二次函数与直角三角形问题为背景的解答题(解析版)(免费下载).docx》由会员分享,可在线阅读,更多相关《2020年中考数学备考优生百日闯关第9关 以二次函数与直角三角形问题为背景的解答题(解析版)(免费下载).docx(57页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、第九关 以二次函数与直角三角形问题为背景的解答题【总体点评】二次函数在全国中考数学中常常作为压轴题,同时在省级,国家级数学竞赛中也有二次函数大题,很多学生在有限的时间内都不能很好完成。由于在高中和大学中很多数学知识都与函数知识或函数的思想有关,学生在初中阶段函数知识和函数思维方法学得好否,直接关系到未来数学的学习。直角三角形的有关知识和二次函数都是初中代数中的重点内容,这两块内容的综合是初中数学最突出的综合内容,因此这类问题就成为中考命题中比较受关注的热点问题.【解题思路】近几年的中考中,二次函数图形中存在性问题始终是热点和难点。考题内容涉及到分类讨论、数形结合、化归等数学思想,对学生思维能力

2、、模型思想等数学素养要求很高,所以学生的失分现象比较普遍和突出。解这类问题有什么规律可循?所应用的知识点:1.抛物线与直线交点坐标;2.抛物线与直线的解析式;3.勾股定理;4.三角形的相似的性质和判定;5.两直线垂直的条件;运用的数学思想:1.函数与方程;2.数形结合;3.分类讨论;4.等价转化;解决二次函数中直角三角形存在性问题采用方法:1. 找点:在已知两定点,确定第三点构成直角三角形时,要么以两定点为直角顶点,要么以动点为直角顶点.以定点为直角顶点时,构造两条直线与已知直线垂直;以动点为直角顶点时,以已知线段为直径构造圆找点;2. 以两定点为直角顶点时,两直线互相垂直,则k1*k2=-1

3、,以已知线段为斜边时,利用K型图,构造双垂直模型,最后利用相似求解,或者三条边分别表示之后,利用勾股定理求解.【典型例题】【例1】(2019·邢台市第八中学中考模拟)如图,已知抛物线的对称轴为直线,且抛物线与轴交于、两点,与轴交于点,其中,.(1)若直线经过、两点,求直线和抛物线的解析式;(2)在抛物线的对称轴上找一点,使点到点的距离与到点的距离之和最小,求出点的坐标;(3)设点为抛物线的对称轴上的一个动点,求使为直角三角形的点的坐标.【答案】(1)抛物线的解析式为,直线的解析式为.(2);(3)的坐标为或或或.【解析】分析:(1)先把点A,C的坐标分别代入抛物线解析式得到a和b,c

4、的关系式,再根据抛物线的对称轴方程可得a和b的关系,再联立得到方程组,解方程组,求出a,b,c的值即可得到抛物线解析式;把B、C两点的坐标代入直线y=mx+n,解方程组求出m和n的值即可得到直线解析式;(2)设直线BC与对称轴x=-1的交点为M,此时MA+MC的值最小把x=-1代入直线y=x+3得y的值,即可求出点M坐标;(3)设P(-1,t),又因为B(-3,0),C(0,3),所以可得BC2=18,PB2=(-1+3)2+t2=4+t2,PC2=(-1)2+(t-3)2=t2-6t+10,再分三种情况分别讨论求出符合题意t值即可求出点P的坐标详解:(1)依题意得:,解得:,抛物线的解析式为

5、.对称轴为,且抛物线经过,把、分别代入直线,得,解之得:,直线的解析式为.(2)直线与对称轴的交点为,则此时的值最小,把代入直线得,.即当点到点的距离与到点的距离之和最小时的坐标为.(注:本题只求坐标没说要求证明为何此时的值最小,所以答案未证明的值最小的原因).(3)设,又,若点为直角顶点,则,即:解得:,若点为直角顶点,则,即:解得:,若点为直角顶点,则,即:解得:,.综上所述的坐标为或或或.【名师点睛】本题综合考查了二次函数的图象与性质、待定系数法求函数(二次函数和一次函数)的解析式、利用轴对称性质确定线段的最小长度、难度不是很大,是一道不错的中考压轴题【例2】(2020·山东初

6、三期末)已知,抛物线yx2+bx+c经过点A(1,0)和C(0,3)(1)求抛物线的解析式;(2)在抛物线的对称轴上,是否存在点P,使PA+PC的值最小?如果存在,请求出点P的坐标,如果不存在,请说明理由;(3)设点M在抛物线的对称轴上,当MAC是直角三角形时,求点M的坐标【答案】(1);(2)当的值最小时,点P的坐标为;(3)点M的坐标为、或.【解析】【分析】由点A、C的坐标,利用待定系数法即可求出抛物线的解析式;连接BC交抛物线对称轴于点P,此时取最小值,利用二次函数图象上点的坐标特征可求出点B的坐标,由点B、C的坐标利用待定系数法即可求出直线BC的解析式,利用配方法可求出抛物线的对称轴,

7、再利用一次函数图象上点的坐标特征即可求出点P的坐标;设点M的坐标为,则,分、和三种情况,利用勾股定理可得出关于m的一元二次方程或一元一次方程,解之可得出m的值,进而即可得出点M的坐标【详解】解:将、代入中,得:,解得:,抛物线的解析式为连接BC交抛物线对称轴于点P,此时取最小值,如图1所示当时,有,解得:,点B的坐标为抛物线的解析式为,抛物线的对称轴为直线设直线BC的解析式为,将、代入中,得:,解得:,直线BC的解析式为当时,当的值最小时,点P的坐标为设点M的坐标为,则,分三种情况考虑:当时,有,即,解得:,点M的坐标为或;当时,有,即,解得:,点M的坐标为;当时,有,即,解得:,点M的坐标为

8、综上所述:当是直角三角形时,点M的坐标为、或【名师点睛】本题考查待定系数法求二次一次函数解析式、二次一次函数图象的点的坐标特征、轴对称中的最短路径问题以及勾股定理,解题的关键是:由点的坐标,利用待定系数法求出抛物线解析式;由两点之间线段最短结合抛物线的对称性找出点P的位置;分、和三种情况,列出关于m的方程【例3】(2019·山东中考模拟)如图,在平面直角坐标系中,ACB=90°,OC=2OB,tanABC=2,点B的坐标为(1,0)抛物线y=x2+bx+c经过A、B两点(1)求抛物线的解析式;(2)点P是直线AB上方抛物线上的一点,过点P作PD垂直x轴于点D,交线段AB于点

9、E,使PE=DE求点P的坐标;在直线PD上是否存在点M,使ABM为直角三角形?若存在,求出符合条件的所有点M的坐标;若不存在,请说明理由【答案】(1)y=x23x+4;(2)P(1,6),存在,M(1,3+)或(1,3)或(1,1)或(1,)【解析】【分析】(1)先根据已知求点A的坐标,利用待定系数法求二次函数的解析式;(2)先得AB的解析式为:y=-2x+2,根据PDx轴,设P(x,-x2-3x+4),则E(x,-2x+2),根据PE=DE,列方程可得P的坐标;先设点M的坐标,根据两点距离公式可得AB,AM,BM的长,分三种情况:ABM为直角三角形时,分别以A、B、M为直角顶点时,利用勾股定

10、理列方程可得点M的坐标【详解】解:(1)B(1,0),OB=1,OC=2OB=2,C(2,0),RtABC中,tanABC=2, , AC=6,A(2,6),把A(2,6)和B(1,0)代入y=x2+bx+c得:,解得:,抛物线的解析式为:y=x23x+4;(2)A(2,6),B(1,0),AB的解析式为:y=2x+2, 设P(x,x23x+4),则E(x,2x+2),PE=DE, x23x+4(2x+2)=(2x+2),x=-1或1(舍), P(1,6);M在直线PD上,且P(1,6),设M(1,y), B(1,0),A(2,6)AM2=(1+2)2+(y6)2=1+(y6)2,BM2=(1

11、+1)2+y2=4+y2, AB2=(1+2)2+62=45,分三种情况:i)当AMB=90°时,有AM2+BM2=AB2,1+(y6)2+4+y2=45, 解得:y=3,M(1,3+)或(1,3);ii)当ABM=90°时,有AB2+BM2=AM2,45+4+y2=1+(y6)2, y=1,M(1,1),iii)当BAM=90°时,有AM2+AB2=BM2,1+(y6)2+45=4+y2, y=,M(1,);综上所述,点M的坐标为:M(1,3+)或(1,3)或(1,1)或(1,)【名师点睛】此题是二次函数的综合题,考查了待定系数法求二次函数的解析式,铅直高度和勾

12、股定理的运用,直角三角形的判定等知识此题难度适中,解题的关键是注意方程思想与分类讨论思想的应用【方法归纳】解决二次函数中直角三角形存在性问题采用方法:1. 找点:在已知两定点,确定第三点构成直角三角形时,要么以两定点为直角顶点,要么以动点为直角顶点.以定点为直角顶点时,构造两条直线与已知直线垂直;以动点为直角顶点时,以已知线段为直径构造圆找点;2. 以两定点为直角顶点时,两直线互相垂直,则k1*k2=-1,以已知线段为斜边时,利用K型图,构造双垂直模型,最后利用相似求解,或者三条边分别表示之后,利用勾股定理求解.【针对练习】1(2019·四川中考真题)如图,在平面直角坐标系中,抛物线

13、(a0)与y轴交与点C(0,3),与x轴交于A、B两点,点B坐标为(4,0),抛物线的对称轴方程为x=1(1)求抛物线的解析式;(2)点M从A点出发,在线段AB上以每秒3个单位长度的速度向B点运动,同时点N从B点出发,在线段BC上以每秒1个单位长度的速度向C点运动,其中一个点到达终点时,另一个点也停止运动,设MBN的面积为S,点M运动时间为t,试求S与t的函数关系,并求S的最大值;(3)在点M运动过程中,是否存在某一时刻t,使MBN为直角三角形?若存在,求出t值;若不存在,请说明理由【答案】(1);(2)S=,运动1秒使PBQ的面积最大,最大面积是;(3)t=或t=【解析】【分析】(1)把点A

14、、B、C的坐标分别代入抛物线解析式,列出关于系数a、b、c的解析式,通过解方程组求得它们的值;(2)设运动时间为t秒利用三角形的面积公式列出SMBN与t的函数关系式利用二次函数的图象性质进行解答;(3)根据余弦函数,可得关于t的方程,解方程,可得答案【详解】(1)点B坐标为(4,0),抛物线的对称轴方程为x=1,A(2,0),把点A(2,0)、B(4,0)、点C(0,3),分别代入(a0),得:,解得:,所以该抛物线的解析式为:;(2)设运动时间为t秒,则AM=3t,BN=t,MB=63t由题意得,点C的坐标为(0,3)在RtBOC中,BC=5如图1,过点N作NHAB于点H,NHCO,BHNB

15、OC,即,HN=t,SMBN=MBHN=(63t)t,即S=,当PBQ存在时,0t2,当t=1时,SPBQ最大=答:运动1秒使PBQ的面积最大,最大面积是;(3)如图2,在RtOBC中,cosB=设运动时间为t秒,则AM=3t,BN=t,MB=63t当MNB=90°时,cosB=,即,化简,得17t=24,解得t=;当BMN=90°时,cosB=,化简,得19t=30,解得t=综上所述:t=或t=时,MBN为直角三角形考点:二次函数综合题;最值问题;二次函数的最值;动点型;存在型;分类讨论;压轴题2(2019·四川中考真题)如图,已知抛物线y=ax2+bx+c的图

16、像经过点A(0,3)、B(1,0),其对称轴为直线l:x=2,过点A作ACx轴交抛物线于点C,AOB的平分线交线段AC于点E,点P是抛物线上的一个动点,设其横坐标为m.(1)求抛物线的解析式; (2)若动点P在直线OE下方的抛物线上,连结PE、PO,当m为何值时,四边形AOPE面积最大,并求出其最大值; (3)如图,F是抛物线的对称轴l上的一点,在抛物线上是否存在点P使POF成为以点P为直角顶点的等腰直角三角形?若存在,直接写出所有符合条件的点P的坐标;若不存在,请说明理由.【答案】(1)y=x2-4x+3.(2)当m=时,四边形AOPE面积最大,最大值为.(3)P点的坐标为 :P1(,),P

17、2(,),P3(,),P4(,). 【解析】分析:(1)利用对称性可得点D的坐标,利用交点式可得抛物线的解析式;(2)设P(m,m2-4m+3),根据OE的解析式表示点G的坐标,表示PG的长,根据面积和可得四边形AOPE的面积,利用配方法可得其最大值;(3)存在四种情况:如图3,作辅助线,构建全等三角形,证明OMPPNF,根据OM=PN列方程可得点P的坐标;同理可得其他图形中点P的坐标详解:(1)如图1,设抛物线与x轴的另一个交点为D,由对称性得:D(3,0),设抛物线的解析式为:y=a(x-1)(x-3),把A(0,3)代入得:3=3a,a=1,抛物线的解析式;y=x2-4x+3;(2)如图

18、2,设P(m,m2-4m+3),OE平分AOB,AOB=90°,AOE=45°,AOE是等腰直角三角形,AE=OA=3,E(3,3),易得OE的解析式为:y=x,过P作PGy轴,交OE于点G,G(m,m),PG=m-(m2-4m+3)=-m2+5m-3,S四边形AOPE=SAOE+SPOE,=×3×3+PGAE,=+×3×(-m2+5m-3),=-m2+m,=(m-)2+,-0,当m=时,S有最大值是;(3)如图3,过P作MNy轴,交y轴于M,交l于N,OPF是等腰直角三角形,且OP=PF,易得OMPPNF,OM=PN,P(m,m2-

19、4m+3),则-m2+4m-3=2-m,解得:m=或,P的坐标为(,)或(,);如图4,过P作MNx轴于N,过F作FMMN于M,同理得ONPPMF,PN=FM,则-m2+4m-3=m-2,解得:x=或;P的坐标为(,)或(,);综上所述,点P的坐标是:(,)或(,)或(,)或(,)点睛:本题属于二次函数综合题,主要考查了二次函数的综合应用,相似三角形的判定与性质以及解一元二次方程的方法,解第(2)问时需要运用配方法,解第(3)问时需要运用分类讨论思想和方程的思想解决问题3(2019·吉林中考真题)如图,在平面直角坐标系中,抛物线y=ax2+2ax3a(a0)与x轴相交于A,B两点,与

20、y轴相交于点C,顶点为D,直线DC与x轴相交于点E(1)当a=1时,求抛物线顶点D的坐标,OE等于多少;(2)OE的长是否与a值有关,说明你的理由;(3)设DEO=,45°60°,求a的取值范围;(4)以DE为斜边,在直线DE的左下方作等腰直角三角形PDE设P(m,n),直接写出n关于m的函数解析式及自变量m的取值范围【答案】(1)(1,4),3;(2)结论:OE的长与a值无关理由见解析;(3)a1;(4)n=m1(m1)【解析】【分析】(1)求出直线CD的解析式即可解决问题;(2)利用参数a,求出直线CD的解析式求出点E坐标即可判断;(3)求出落在特殊情形下的a的值即可判

21、断;(4)如图,作PM对称轴于M,PNAB于N两条全等三角形的性质即可解决问题.【详解】解:(1)当a=1时,抛物线的解析式为y=x22x+3,顶点D(1,4),C(0,3),直线CD的解析式为y=x+3,E(3,0),OE=3,(2)结论:OE的长与a值无关理由:y=ax2+2ax3a,C(0,3a),D(1,4a),直线CD的解析式为y=ax3a,当y=0时,x=3,E(3,0),OE=3,OE的长与a值无关(3)当=45°时,OC=OE=3,3a=3,a=1,当=60°时,在RtOCE中,OC=OE=3,3a=3,a=,45°60°,a的取值范围为

22、a1(4)如图,作PM对称轴于M,PNAB于NPD=PE,PMD=PNE=90°,DPE=MPN=90°,DPM=EPN,DPMEPN,PM=PN,PM=EN,D(1,4a),E(3,0),EN=4+n=3m,n=m1,当顶点D在x轴上时,P(1,2),此时m的值1,抛物线的顶点在第二象限,m1n=m1(m1)故答案为:(1)(1,4),3;(2)OE的长与a值无关;(3)a1;(4)n=m1(m1)【点睛】本题是二次函数综合题,考查了二次函数的图象与性质。4(2019·湖南中考真题)如图,在平面直角坐标系中,抛物线y=ax2+2x+c与x轴交于A(1,0)B(3

23、,0)两点,与y轴交于点C,点D是该抛物线的顶点(1)求抛物线的解析式和直线AC的解析式;(2)请在y轴上找一点M,使BDM的周长最小,求出点M的坐标;(3)试探究:在拋物线上是否存在点P,使以点A,P,C为顶点,AC为直角边的三角形是直角三角形?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由【答案】(1)抛物线解析式为y=x2+2x+3;直线AC的解析式为y=3x+3;(2)点M的坐标为(0,3);(3)符合条件的点P的坐标为(,)或(,),【解析】分析:(1)设交点式y=a(x+1)(x-3),展开得到-2a=2,然后求出a即可得到抛物线解析式;再确定C(0,3),然后利用待定系

24、数法求直线AC的解析式;(2)利用二次函数的性质确定D的坐标为(1,4),作B点关于y轴的对称点B,连接DB交y轴于M,如图1,则B(-3,0),利用两点之间线段最短可判断此时MB+MD的值最小,则此时BDM的周长最小,然后求出直线DB的解析式即可得到点M的坐标;(3)过点C作AC的垂线交抛物线于另一点P,如图2,利用两直线垂直一次项系数互为负倒数设直线PC的解析式为y=-x+b,把C点坐标代入求出b得到直线PC的解析式为y=-x+3,再解方程组得此时P点坐标;当过点A作AC的垂线交抛物线于另一点P时,利用同样的方法可求出此时P点坐标详解:(1)设抛物线解析式为y=a(x+1)(x3),即y=

25、ax22ax3a,2a=2,解得a=1,抛物线解析式为y=x2+2x+3;当x=0时,y=x2+2x+3=3,则C(0,3),设直线AC的解析式为y=px+q,把A(1,0),C(0,3)代入得,解得,直线AC的解析式为y=3x+3;(2)y=x2+2x+3=(x1)2+4,顶点D的坐标为(1,4),作B点关于y轴的对称点B,连接DB交y轴于M,如图1,则B(3,0),MB=MB,MB+MD=MB+MD=DB,此时MB+MD的值最小,而BD的值不变,此时BDM的周长最小,易得直线DB的解析式为y=x+3,当x=0时,y=x+3=3,点M的坐标为(0,3);(3)存在过点C作AC的垂线交抛物线于

26、另一点P,如图2,直线AC的解析式为y=3x+3,直线PC的解析式可设为y=x+b,把C(0,3)代入得b=3,直线PC的解析式为y=x+3,解方程组,解得或,则此时P点坐标为(,);过点A作AC的垂线交抛物线于另一点P,直线PC的解析式可设为y=x+b,把A(1,0)代入得+b=0,解得b=,直线PC的解析式为y=x,解方程组,解得或,则此时P点坐标为(,).综上所述,符合条件的点P的坐标为(,)或(,).点睛:本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征和二次函数的性质;会利用待定系数法求函数解析式,理解两直线垂直时一次项系数的关系,通过解方程组求把两函数的交点坐标;理解

27、坐标与图形性质,会运用两点之间线段最短解决最短路径问题;会运用分类讨论的思想解决数学问题5(2019·湖南中考真题)如图,在直角坐标系中有,为坐标原点,将此三角形绕原点顺时针旋转,得到,二次函数的图象刚好经过三点(1)求二次函数的解析式及顶点的坐标;(2)过定点的直线与二次函数图象相交于两点若,求的值;证明:无论为何值,恒为直角三角形;当直线绕着定点旋转时,外接圆圆心在一条抛物线上运动,直接写出该抛物线的表达式【答案】(1),;(2);见解析;【解析】【分析】(1)求出点A、B、C的坐标分别为(0,3)、(-1,0)、(3,0),即可求解;(2)SPMN=PQ×(x2-x1

28、),则x2-x1=4,即可求解;k1k2=-1,即可求解;取MN的中点H,则点H是PMN外接圆圆心,即可求解【详解】(1),则,即点的坐标分别为、,则二次函数表达式为:,即:,解得:,故函数表达式为:,点;(2)将二次函数与直线的表达式联立并整理得:,设点的坐标为、,则,则:,同理:,当时,即点,则,解得:;点的坐标为、点,则直线表达式中的值为:,直线表达式中的值为:,为: ,故,即:恒为直角三角形;取的中点,则点是外接圆圆心,设点坐标为,则,整理得:,即:该抛物线的表达式为:【点睛】本题考查的是二次函数综合运用,涉及到一次函数、圆的基本知识等,其中,用根与系数的关系处理复杂数据,是本题解题的

29、关键6(2019·山东中考真题)如图1,抛物线经过平行四边形的顶点、,抛物线与轴的另一交点为.经过点的直线将平行四边形分割为面积相等的两部分,与抛物线交于另一点.点为直线上方抛物线上一动点,设点的横坐标为.(1)求抛物线的解析式; (2)当何值时,的面积最大?并求最大值的立方根;(3)是否存在点使为直角三角形?若存在,求出的值;若不存在,说明理由.【答案】(1)抛物线解析式为y=x2+2x+3;(2)当t=时,PEF的面积最大,其最大值为×,最大值的立方根为=;(3)存在满足条件的点P,t的值为1或【解析】试题分析:(1)由A、B、C三点的坐标,利用待定系数法可求得抛物线解

30、析式;(2)由A、C坐标可求得平行四边形的中心的坐标,由抛物线的对称性可求得E点坐标,从而可求得直线EF的解析式,作PHx轴,交直线l于点M,作FNPH,则可用t表示出PM的长,从而可表示出PEF的面积,再利用二次函数的性质可求得其最大值,再求其最大值的立方根即可;(3)由题意可知有PAE=90°或APE=90°两种情况,当PAE=90°时,作PGy轴,利用等腰直角三角形的性质可得到关于t的方程,可求得t的值;当APE=90°时,作PKx轴,AQPK,则可证得PKEAQP,利用相似三角形的性质可得到关于t的方程,可求得t的值试题解析: (1)由题意可得,

31、解得,抛物线解析式为y=x2+2x+3;(2)A(0,3),D(2,3),BC=AD=2,B(1,0),C(1,0),线段AC的中点为(,),直线l将平行四边形ABCD分割为面积相等两部分,直线l过平行四边形的对称中心,A、D关于对称轴对称,抛物线对称轴为x=1,E(3,0),设直线l的解析式为y=kx+m,把E点和对称中心坐标代入可得,解得,直线l的解析式为y=x+,联立直线l和抛物线解析式可得,解得或,F(,),如图1,作PHx轴,交l于点M,作FNPH,P点横坐标为t,P(t,t2+2t+3),M(t,t+),PM=t2+2t+3(t+)=t2+t+,SPEF=SPFM+SPEM=PMF

32、N+PMEH=PM(FN+EH)=(t2+t+)(3+)=(t)+×,当t=时,PEF的面积最大,其最大值为×,最大值的立方根为=;(3)由图可知PEA90°,只能有PAE=90°或APE=90°,当PAE=90°时,如图2,作PGy轴,OA=OE,OAE=OEA=45°,PAG=APG=45°,PG=AG,t=t2+2t+33,即t2+t=0,解得t=1或t=0(舍去),当APE=90°时,如图3,作PKx轴,AQPK,则PK=t2+2t+3,AQ=t,KE=3t,PQ=t2+2t+33=t2+2t,A

33、PQ+KPE=APQ+PAQ=90°,PAQ=KPE,且PKE=PQA,PKEAQP,即,即t2t1=0,解得t=或t=(舍去),综上可知存在满足条件的点P,t的值为1或考点:二次函数综合题7(2018·辽宁中考真题)如图,在平面角坐标系中,抛物线C1:y=ax2+bx1经过点A(2,1)和点B(1,1),抛物线C2:y=2x2+x+1,动直线x=t与抛物线C1交于点N,与抛物线C2交于点M(1)求抛物线C1的表达式;(2)直接用含t的代数式表示线段MN的长;(3)当AMN是以MN为直角边的等腰直角三角形时,求t的值;(4)在(3)的条件下,设抛物线C1与y轴交于点P,点M

34、在y轴右侧的抛物线C2上,连接AM交y轴于点k,连接KN,在平面内有一点Q,连接KQ和QN,当KQ=1且KNQ=BNP时,请直接写出点Q的坐标【答案】(1)抛物线C1:解析式为y=x2+x1;(2)MN=t2+2;(3)t的值为1或0;(4)满足条件的Q点坐标为:(0,2)、(1,3)、(,)、(,)【解析】【分析】(1)利用待定系数法进行求解即可;(2)把x=t代入函数关系式相减即可得;(3)根据图形分别讨论ANM=90°、AMN=90°时的情况即可得;(4)根据题意画出满足条件图形,可以找到AN为KNP对称轴,由对称性找到第一个满足条件Q,再通过延长和圆的对称性找到剩余

35、三个点,利用勾股定理进行计算【详解】(1)抛物线C1:y=ax2+bx1经过点A(2,1)和点B(1,1),解得:,抛物线C1:解析式为y=x2+x1;(2)动直线x=t与抛物线C1交于点N,与抛物线C2交于点M,点N的纵坐标为t2+t1,点M的纵坐标为2t2+t+1,MN=(2t2+t+1)(t2+t1)=t2+2;(3)共分两种情况当ANM=90°,AN=MN时,由已知N(t,t2+t1),A(2,1),AN=t(2)=t+2,MN=t2+2,t2+2=t+2,t1=0(舍去),t2=1,t=1;当AMN=90°,AN=MN时,由已知M(t,2t2+t+1),A(2,1

36、),AM=t(2)=t+2,MN=t2+2,t2+2=t+2,t1=0,t2=1(舍去),t=0,故t的值为1或0;(4)由(3)可知t=1时M位于y轴右侧,根据题意画出示意图如图:易得K(0,3),B、O、N三点共线,A(2,1),N(1,1),P(0,1),点K、P关于直线AN对称,设K与y轴下方交点为Q2,则其坐标为(0,2),Q2与点O关于直线AN对称,Q2是满足条件KNQ=BNP,则NQ2延长线与K交点Q1,Q1、Q2关于KN的对称点Q3、Q4也满足KNQ=BNP,由图形易得Q1(1,3),设点Q3坐标为(a,b),由对称性可知Q3N=NQ1=BN=2,由K半径为1,解得:,同理,设

37、点Q4坐标为(a,b),由对称性可知Q4N=NQ2=NO=,解得:,满足条件的Q点坐标为:(0,2)、(1,3)、(,)、(,).【点睛】本题为代数几何综合题,考查了待定系数法、二次函数基本性质、轴对称的性质、平面内两点间的距离等,熟练掌握相关知识、灵活运用分类讨论、数形结合以及构造数学模型等数学思想是解题的关键8(2018·广西中考真题)如图,抛物线y=ax25ax+c与坐标轴分别交于点A,C,E三点,其中A(3,0),C(0,4),点B在x轴上,AC=BC,过点B作BDx轴交抛物线于点D,点M,N分别是线段CO,BC上的动点,且CM=BN,连接MN,AM,AN(1)求抛物线的解析

38、式及点D的坐标;(2)当CMN是直角三角形时,求点M的坐标;(3)试求出AM+AN的最小值【答案】(1)抛物线解析式为y=x2+x+4;D点坐标为(3,5);(2)M点的坐标为(0,)或(0,);(3)AM+AN的最小值为【解析】【分析】(1)利用待定系数法求抛物线解析式;利用等腰三角形的性质得B(3,0),然后计算自变量为3所对应的二次函数值可得到D点坐标;(2)利用勾股定理计算出BC=5,设M(0,m),则BN=4m,CN=5(4m)=m+1,由于MCN=OCB,根据相似三角形的判定方法,当时,CMNCOB,于是有CMN=COB=90°,即;当时,CMNCBO,于是有CNM=CO

39、B=90°,即,然后分别求出m的值即可得到M点的坐标;(3)连接DN,AD,如图,先证明ACMDBN,则AM=DN,所以AM+AN=DN+AN,利用三角形三边的关系得到DN+ANAD(当且仅当点A、N、D共线时取等号),然后计算出AD即可【详解】(1)把A(3,0),C(0,4)代入y=ax25ax+c得,解得,抛物线解析式为y=x2+x+4;AC=BC,COAB,OB=OA=3,B(3,0),BDx轴交抛物线于点D,D点的横坐标为3,当x=3时,y=×9+×3+4=5,D点坐标为(3,5);(2)在RtOBC中,BC=5,设M(0,m),则BN=4m,CN=5(

40、4m)=m+1,MCN=OCB,当时,CMNCOB,则CMN=COB=90°,即,解得m=,此时M点坐标为(0,);当时,CMNCBO,则CNM=COB=90°,即,解得m=,此时M点坐标为(0,);综上所述,M点的坐标为(0,)或(0,);(3)连接DN,AD,如图,AC=BC,COAB,OC平分ACB,ACO=BCO,BDOC,BCO=DBC,DB=BC=AC=5,CM=BN,ACMDBN,AM=DN,AM+AN=DN+AN,而DN+ANAD(当且仅当点A、N、D共线时取等号),DN+AN的最小值=,AM+AN的最小值为【点睛】本题考查了二次函数图象上点的坐标特征、二次

41、函数的性质和相似三角形的判定与性质等,解题的关键是会利用待定系数法求函数解析式、理解坐标与图形性质、会运用分类讨论的思想解决数学问题9(2018·四川中考真题)如图,已知二次函数y=ax2+bx+3 的图象与x轴分别交于A(1,0),B(3,0)两点,与y轴交于点C(1)求此二次函数解析式;(2)点D为抛物线的顶点,试判断BCD的形状,并说明理由;(3)将直线BC向上平移t(t>0)个单位,平移后的直线与抛物线交于M,N两点(点M在y轴的右侧),当AMN为直角三角形时,求t的值【答案】(1);(2)BCD为直角三角形,理由见解析;(3)当AMN为直角三角形时,t的值为1或4【解

42、析】【分析】(1)根据点A、B的坐标,利用待定系数法即可求出二次函数解析式;(2)利用配方法及二次函数图象上点的坐标特征,可求出点C、D的坐标,利用两点间的距离公式可求出CD、BD、BC的长,由勾股定理的逆定理可证出BCD为直角三角形;(3)根据点B、C的坐标,利用待定系数法可求出直线BC的解析式,进而可找出平移后直线的解析式,联立两函数解析式成方程组,通过解方程组可找出点M、N的坐标,利用两点间的距离公式可求出AM2、AN2、MN2的值,分别令三个角为直角,利用勾股定理可得出关于t的无理方程,解之即可得出结论【详解】(1)将、代入,得:,解得:,此二次函数解析式为(2)为直角三角形,理由如下

43、:,顶点的坐标为当时,点的坐标为点的坐标为,为直角三角形(3)设直线的解析式为,将,代入,得:,解得:,直线的解析式为,将直线向上平移个单位得到的直线的解析式为联立新直线与抛物线的解析式成方程组,得:,解得:,点的坐标为,点的坐标为,点的坐标为,为直角三角形,分三种情况考虑:当时,有,即,整理,得:,解得:,(不合题意,舍去);当时,有,即,整理,得:,解得:,(不合题意,舍去);当时,有,即,整理,得:,该方程无解(或解均为增解)综上所述:当为直角三角形时,的值为1或4【点睛】本题考查了待定系数法求二次函数解析式、待定系数法求一次函数解析式、二次函数图象上点的坐标特征、勾股定理以及勾股定理的

44、逆定理,解题的关键是:(1)根据点的坐标,利用待定系数法求出二次函数解析式;(2)利用两点间的距离公式结合勾股定理的逆定理找出BC2+BD2=CD2;(3)分MAN=90°、AMN=90°及ANM=90°三种情况考虑10(2018·黑龙江中考真题)如图,抛物线y=x2+bx+c与x轴交于A、B两点,B点坐标为(4,0),与y轴交于点C(0,4)(1)求抛物线的解析式;(2)点P在x轴下方的抛物线上,过点P的直线y=x+m与直线BC交于点E,与y轴交于点F,求PE+EF的最大值;(3)点D为抛物线对称轴上一点当BCD是以BC为直角边的直角三角形时,直接写出点D的坐标;若BCD是锐角三角形,直接写出点D的纵坐标n的取值范围【答案】(1)抛物线的解析式为y=x25x+4;(2)PE+EF的最大值为;(3)符合条件的点D的坐标是(,)或(,);点D的纵坐标的取值范围为y或y【解析】【分析】(1)利用待定系数法求抛物线的解析式;(2)易得BC的解析式为y=x+4,先证明ECF为等腰直角三角形

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 初中资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁