高中数学直线和圆知识点复习总结(共9页).doc

上传人:飞****2 文档编号:48423669 上传时间:2022-10-06 格式:DOC 页数:9 大小:562.50KB
返回 下载 相关 举报
高中数学直线和圆知识点复习总结(共9页).doc_第1页
第1页 / 共9页
高中数学直线和圆知识点复习总结(共9页).doc_第2页
第2页 / 共9页
点击查看更多>>
资源描述

《高中数学直线和圆知识点复习总结(共9页).doc》由会员分享,可在线阅读,更多相关《高中数学直线和圆知识点复习总结(共9页).doc(9页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、精选优质文档-倾情为你奉上直线和圆知识梳理【一】【直线的方程】1斜率与倾斜角:,(1)时,;(2)时,不存在;(3)时,(4)当倾斜角从增加到时,斜率从增加到;当倾斜角从增加到时,斜率从增加到2直线方程(1)点斜式:(2)斜截式:(3)两点式:(4)截距式:(5)一般式:3距离公式(1)点,之间的距离:(2)点到直线的距离:(3)平行线间的距离:与的距离:4位置关系(1)截距式:形式重合: 相交:平行: 垂直:(2)一般式:形式重合:且且平行:且且垂直: 相交:5直线系表示过两直线和交点的所有直线方程(不含)【二】【圆】1圆的方程(1)标准形式:()(2)一般式:()(3)参数方程:(是参数)

2、【注】题目中出现动点求量时,通常可采取参数方程转化为三角函数问题去解决.(4)以,为直径的圆的方程是:2位置关系(1)点和圆的位置关系:当时,点在圆内部当时,点在圆上当时,点在圆外(2)直线和圆的位置关系:判断圆心到直线的距离与半径的大小关系当时,直线和圆相交(有两个交点);当时,直线和圆相切(有且仅有一个交点);当时,直线和圆相离(无交点);3圆和圆的位置关系判断圆心距与两圆半径之和,半径之差()的大小关系当时,两圆相离,有4条公切线;当时,两圆外切,有3条公切线;当时,两圆相交,有2条公切线;当时,两圆内切,有1条公切线;当时,两圆内含,没有公切线;4当两圆相交时,两圆相交直线方程等于两圆

3、方程相减5弦长公式:【三】【初中圆的理论汇编】一、圆的概念集合形式的概念: 1、 圆可以看作是到定点的距离等于定长的点的集合; 2、圆的外部:可以看作是到定点的距离大于定长的点的集合; 3、圆的内部:可以看作是到定点的距离小于定长的点的集合轨迹形式的概念:1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;(补充)2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线(也叫中垂线);3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线; 4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线; 5、到两条平行线距离相等的点的轨

4、迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。二、点与圆的位置关系1、点在圆内 点在圆内;2、点在圆上 点在圆上;3、点在圆外 点在圆外;三、直线与圆的位置关系1、直线与圆相离无交点;2、直线与圆相切有一个交点;3、直线与圆相交有两个交点;四、圆与圆的位置关系外离(图1)无交点 ;外切(图2) 有一个交点;相交(图3) 有两个交点;内切(图4) 有一个交点;内含(图5) 无交点 ;五、垂径定理垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧; (3)平分弦所

5、对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧 以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即: 是直径 弧弧 弧弧中任意2个条件推出其他3个结论。推论2:圆的两条平行弦所夹的弧相等。 即:在中,弧弧六、圆心角定理圆心角定理:同圆或等圆中,相等的圆心角所对的弦相等,所对的弧相等,弦心距相等。 此定理也称1推3定理,即上述四个结论中,只要知道其中的1个相等,则可以推出其它的3个结论,即:; 弧弧七、圆周角定理1、圆周角定理:同弧所对的圆周角等于它所对的圆心的角的一半。即:和是弧所对的圆心角和圆周角2、圆周角定理的推论:推论1:同弧或等弧所对

6、的圆周角相等;同圆或等圆中,相等的圆周角所对的弧是等弧;即:在中,、都是所对的圆周角推论2:半圆或直径所对的圆周角是直角;圆周角是直角所对的弧是半圆,所对的弦是直径。即:在中,是直径 或 是直径推论3:若三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。即:在中, 是直角三角形或注:此推论实是初二年级几何中矩形的推论:在直角三角形中斜边上的中线等于斜边的一半的逆定理。在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等八、圆内接四边形圆的内接四边形定理:圆的内接四边形的对角互补,外角等于它的内对角。即:在中, 四边形是内接四边形九、切线的性质与判定定理(1)切线的判定定理:过半

7、径外端且垂直于半径的直线是切线; 两个条件:过半径外端且垂直半径,二者缺一不可 即:且过半径外端 是的切线(2)性质定理:切线垂直于过切点的半径(如上图) 推论1:过圆心垂直于切线的直线必过切点。 推论2:过切点垂直于切线的直线必过圆心。以上三个定理及推论也称二推一定理:即:过圆心;过切点;垂直切线,三个条件中知道其中两个条件就能推出最后一个。十、切线长定理切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,这点和圆心的连线平分两条切线的夹角。即:、是的两条切线 平分十一、圆幂定理(1)相交弦定理:圆内两弦相交,交点分得的两条线段的乘积相等。即:在中,弦、相交于点, (2)推论:如果弦与直

8、径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项。即:在中,直径,(3)切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。即:在中,是切线,是割线 (4)割线定理:从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等(如上图)。即:在中,、是割线 十二、两圆公共弦定理圆公共弦定理:两圆圆心的连线垂直并且平分这两个圆的的公共弦。如图:垂直平分。即:、相交于、两点 垂直平分十三、圆的公切线两圆公切线长的计算公式:(1)公切线长:中,;(2)外公切线长:是半径之差;内公切线长:是半径之和 。十四、圆内正多边形的计算(1)正三角形

9、在中是正三角形,有关计算在中进行:;(2)正四边形同理,四边形的有关计算在中进行,:(3)正六边形同理,六边形的有关计算在中进行,.十五、扇形、圆柱和圆锥的相关计算公式1、扇形:(1)弧长公式:;(2)扇形面积公式: :圆心角 :扇形多对应的圆的半径 :扇形弧长 :扇形面积2、圆柱:(1)圆柱侧面展开图=(2)圆柱的体积:(2)圆锥侧面展开图(1)=(2)圆锥的体积:(一)圆的有关性质知识归纳 1. 圆的有关概念: 圆、圆心、半径、圆的内部、圆的外部、同心圆、等圆; 弦、直径、弦心距、弧、半圆、优弧、劣弧、等弧、弓形、弓形的高; 圆的内接三角形、三角形的外接圆、三角形的外心、圆内接多边形、多边

10、形的外接圆;圆心角、圆周角、圆内接四边形的外角。 2. 圆的对称性 圆是轴对称图形,经过圆心的每一条直线都是它的对称轴,圆有无数条对称轴; 圆是以圆心为对称中心的中心对称图形; 圆具有旋转不变性。 3. 圆的确定 不在同一条直线上的三点确定一个圆。4. 垂直于弦的直径 垂径定理 垂直于弦的直径平分这条弦,并且平分弦所对的两条弧; 推论1 (1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧; (3)平分弦所对的一条弧的直径垂直平分弦,并且平分弦所对的另一条弧。 垂径定理及推论1 可理解为一个圆和一条直线具备下面五个条件中的任意两

11、个,就可推出另外三个:过圆心;垂直于弦;平分弦(不是直径);平分弦所对的优弧;平分弦所对的劣弧。 推论2 圆的两条平行弦所夹的弧相等。 5. 圆心角、弧、弦、弦心距之间的关系 定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等;所对的弦的弦心距相等。 推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等。 此定理和推论可以理解成:在同圆或等圆中,满足下面四个条件中的任何一个就能推出另外三个:两个圆心角相等;两个圆心角所对的弧相等;两个圆心角或两条弧所对的弦相等;两条弦的弦心距相等。 圆心角的度数等于它所对的弧的度数。

12、 6. 圆周角 定理 一条弧所对的圆周角等于它所对的圆心角的一半; 推论1 同弧或等弧所对的圆周角相等;在同圆或等圆中,相等的圆周角所对的弧也相等; 推论2 半圆(或直径)所对的圆周角是直角;90的圆周角所对的弦是直径; 推论3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。 圆周角的度数等于它所对的弧的度数的一半。 7. 圆内接四边形的性质 圆内接四边形的对角互补,并且任何一个外角都等于它的内对角。 8. 轨迹轨迹 符合某一条件的所有的点组成的图形,叫做符合这个条件的点的轨迹。(1)平面内,到一定点的距离等于定长的点的轨迹,是以这个定点为圆心,定长为半径的圆;(2)平面内,和已知线段两个端点的距离相等的点的轨迹,是这条线段的垂直平分线;(3)平面内,到已知角两边的距离相等的点的轨迹,是这个角的平分线。专心-专注-专业

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 教案示例

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁