《混凝土外加剂适应性试验精选PPT.ppt》由会员分享,可在线阅读,更多相关《混凝土外加剂适应性试验精选PPT.ppt(50页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、混凝土外加剂适应性试验第1页,此课件共50页哦前言前言混凝土中应用外加剂可以解决那些问题?1、提高混凝土或砂浆拌合物的流动性2、提高混凝土及砂浆的强度(如应用减水剂、早强剂,混凝土的早期强度可提高50100%,28天强度提高1030%)3、节省水泥4、代替特种水泥5、调节混凝土或砂浆的凝结硬化速度第2页,此课件共50页哦6、调节混凝土或砂浆的空气含量7、降低水泥的初期水化热或延缓水化放热8、减少拌合物的泌水性,避免拌合物离析9、提高混凝土或砂浆的耐硫酸盐腐蚀性10、提高骨料与砂浆界面的粘结力11、改变砂浆及混凝土的颜色第3页,此课件共50页哦混凝土减水剂的性能混凝土减水剂的性能在不减少水泥、用
2、水量的情况下,改善新拌混凝土的工作度,提高混凝土的流动性;在保持流动性不变的情况下能减少混凝土的单位体积内的用水量,显著提高水灰比,提高混凝土的强度;在保持一定强度情况下,减少单位体积混凝土的水泥用量,节约水泥;改善混凝土拌合物的可泵性以及混凝土的其它物理力学性能。第4页,此课件共50页哦减水剂的发展历史减水剂的发展历史20世纪30年代初,美国、英国、日本等已经在公路、隧道、地下工程中使用木质素磺酸盐类减水剂。目前国外对萘系、三聚氰胺系等高效减水剂的研究和应用已日趋完善,我国在80年代,典型的三类高效减水剂,即萘系、多环芳烃和三聚氰胺减水剂都相继研制成功并投人使用。现把目光转向了新型的聚羧酸盐
3、系高效减水剂。聚羧酸盐系高效减水剂是直接用有机化工原料通过接枝共聚反应合成的高分子表面活性剂,它不仅能吸附在水泥颗粒表面上,使水泥颗粒表面带电而互相排斥,而且还因具有支链的位阻作用,从而对水泥分散的作用更强、更持久。因此,聚羧酸盐系减水剂被认为是目前最高效的新一代减水剂。第5页,此课件共50页哦 由于减水剂与水泥存在适应性的问题,故在减水剂使用过程中,应对水泥和外加剂进行选择,通过试验确定水泥和外加剂量。在施工过程中,在配制混凝土前还应进行试验和试拌,确保两者相互适应,再进行混凝土施工,以避免在施工过程中出现问题,造成不必要的麻烦。市场竞争日益激烈,客户希望以更低的成本获得更高的混凝土强度,因
4、此对水泥的使用性能要求越来越高,作为水泥生产厂家,关注水泥的使用性能,改善水泥的外加剂适应性,是顺应市场要求,赢得客户满意度的重要手段。第6页,此课件共50页哦外加剂的定义及分类混凝土减水剂的分类混凝土减水剂的技术指标水泥与减水剂相容性的试验方法影响水泥外加剂适应性的因素主要内容主要内容第7页,此课件共50页哦外加剂的定义及分类外加剂的定义及分类混凝土外加剂是在拌制混凝土过程中掺入,用以改善混凝土性能的物质,一般掺量不大于水泥质量的5%。第8页,此课件共50页哦按照功能分类:1、改善混凝土拌合物流变性能的外加剂:各种减水剂、引气剂、泵送剂、灌浆剂、保水剂等2、调节混凝土凝结时间、硬化性能的外加
5、剂:缓凝剂、早强剂、速凝剂等3、改善混凝土耐久性的外加剂:引气剂、防水剂阻锈剂等4、改善混凝土其他性能的外加剂:加气剂、膨胀剂、防冻剂、着色剂等第9页,此课件共50页哦外加剂的定义及分类混凝土减水剂的分类混凝土减水剂的技术指标水泥与减水剂相容性的试验方法影响水泥外加剂适应性的因素主要内容主要内容第10页,此课件共50页哦萘系减水剂 其生产原料来自煤焦油,为含单环、多环或杂环芳烃并带有极性磺酸基团的聚合物电解质。氨基磺酸盐系减水剂 氨基磺酸盐系减水剂一般是在一定温度条件下,以对氨基苯磺酸、苯酚、甲醛为主要原料缩合而成,也可用联苯酚及尿素为原料缩合制成。聚氰胺系高效减水剂 三聚氰胺系高效减水剂(俗
6、称蜜胺减水剂),化学名称为磺化三聚氰胺甲醛树脂。羧酸盐系高效减水剂 分子结构为梳型,由带羧酸盐基、磺酸盐基、聚氧化乙烯侧链基的烯类单体按一定比例在水溶液中共聚而成。第11页,此课件共50页哦羧酸盐系高效减水剂 有以下几个特点:(1)低掺量(质量分数为0.2%-0.5%)而分散性能好;(2)经时坍落度损失小,90 min内坍落度基本无损失;(3)在相同流动度下比较时,可以延缓水泥的凝结;(4)分子结构上自由度大,制造技术上可控制的参数多,高性能化的潜力大;(5)合成中不使用甲醛,因而对环境不造成污染;(6)与水泥和其它种类的混凝土外加剂相容性好;(7)使用聚羧酸盐类减水剂,可用更多的矿渣或粉煤灰
7、取代水泥,从而降低成本。第12页,此课件共50页哦减水剂的作用机理减水剂的作用机理静电斥力理论:静电斥力理论:适用于解释分子中含有一S03基团的高效减水剂,如萘系减水剂、三聚氰胺系减水剂等。空间位阻效应:空间位阻效应:适用于聚羧酸盐系高效减水剂。第13页,此课件共50页哦静电斥力理论静电斥力理论 由于水泥矿物中含有带不同电荷的组分,而正负电荷的相互吸引将导致混凝土产生絮凝结构(如图)。由于在絮凝结构中包裹着很多拌合水,因而无法提供较多的水用于润滑水泥颗粒,所以降低了新拌混凝土的和易性。由于减水剂是极性分子,吸附在水泥颗粒表面,向外带相同的电荷,而向内则带另一种极性的相同电荷,故形成双电层。由于
8、水泥颗粒表面均带相同的电荷,从则由于静电相斥作用而分散。第14页,此课件共50页哦第15页,此课件共50页哦空间位阻解释空间位阻解释 聚羧酸盐系减水剂分子呈梳形,含有较多较长的支链,当它们吸附在水泥颗粒表层后,可以在水泥表面上形成较厚的立体包层,减水剂吸附在水泥颗粒表面,颗粒之间的分子引力随着水泥颗粒表面吸附层的厚度增加而减小,从而帮助水泥颗粒分散,提高拌合物的流动性。第16页,此课件共50页哦外加剂的定义及分类混凝土减水剂的分类混凝土减水剂的技术指标水泥与减水剂相容性的试验方法影响水泥外加剂适应性的因素主要内容主要内容第17页,此课件共50页哦混凝土减水剂的技术指标混凝土减水剂的技术指标混凝
9、土减水剂的检验项目包括:PH值、密度(或细度)、含固量、混凝土减水率、坍落度和坍落度1h经时变化量测定、泌水率比、凝结时间差、抗压强度比、收缩率比、相对耐久性。第18页,此课件共50页哦外加剂匀质性指标PH值检测:使用酸度计测量密度检测:用已校正容积的比重瓶装入被测溶液,在201恒温,在天平上称出质量后计算密度。细度检测:试样与100-150烘干后,秤取10g倒入孔径为0.315mm的铜丝网试验筛,加筛盖,以120次/min速度摇动筛并用手拍打,称量筛余物计算细度。含固量:称取固体产品(1-2g),液体产品(3-5g)样品于已知重量的秤量瓶中,开启瓶盖,放入100-105烘箱中烘干30min,
10、直至恒重后称量计算剩余物体重量。第19页,此课件共50页哦使用基准水泥评价减水剂质量的试验方法1、使用材料要求:基准水泥:除满足42.5强度等级硅酸盐水泥技术要求外,还要求水泥熟料C3A含量6%-8%;C3S含量55%-60%;f-CaO含量不超过1.2%;水泥碱含量不超过1.0%;水泥比表面积(35010m2/kg)。砂:所用砂子应满足GB/T14684建筑用砂中区要求的中砂,且它的细度模数为2.62.9的,含泥量小于1%。石:所用石子应满足GB/14685建筑用卵石、碎石的要求,且粒级为520mm的碎石或卵石。采用二级级配,其中510mm粒级占40%,1020mm占60%,满足连续级配要求
11、。如有争议,以碎石试验结果为准。水:试验用水应满足JGJ63混凝土拌合物用水标准的要求。第20页,此课件共50页哦2、配合比:基准混凝土配合比按JGJ55普通混凝土配合比设计规程进行设计。掺非引气型外加剂混凝土和基准混凝土的水泥、砂、石的比例不变,配合比设计还应满足以下要求:a、水泥用量:掺高性能减水剂或泵送剂的基准混凝土和受检混凝土的单位水泥用量为360kg/m3;掺其他外加剂的基准混凝土和受检混凝土单位水泥用量为330kg/m3;b、砂率:掺高性能减水剂或泵送剂的基准混凝土和受检混凝土的砂率均为43%47%;掺其他外加剂的基准混凝土和受检混凝土的砂率为36%40%;但掺引气减水剂或引气剂的
12、受检混凝土的砂率应比基准混凝土低1%3%;第21页,此课件共50页哦 c、外加剂掺量:按生产厂家指定掺量;d、用水量:掺高性能减水剂或泵送剂的基准混凝土和受检混凝土的坍落度控制在(21010mm),用水量为坍落度在(21010mm)时的最小用水量;掺其他外加剂的基准混凝土和受检混凝土的坍落度控制在(8010mm)。TB10424-2010规定对高效减水剂和聚羧酸系高性能减水剂检验减水率、含气量、泌水率比、抗压强度比、凝结时间之差、收缩率比时,混凝土坍落度宜为(8010mm)。e、用水量包括液体外加剂、砂、石材料中所含的水量。第22页,此课件共50页哦3、混凝土搅拌:采用60L单卧轴式强制搅拌机
13、,搅拌机的拌合量应不少于20L,不宜大于45L,先干料搅拌均匀,后加水(水和外加剂)一起搅拌2分钟,出料后在铁板上用人工翻拌23次再进行试验。各种混凝土试验材料及试验环境温度均应保持在(203)。试件制作:混凝土试件制作及养护按GB/T50080进行,但混凝土预养温度为(203)。第23页,此课件共50页哦 减水率 在坍落度基本相同时,掺用外加剂混凝土的用水量(W1)与不掺外加剂基准混凝土的用水量(W0)之差与不掺外加剂基准混凝土用水量的比值。减水率(%)=(W0-W1)100/WO 混凝土中掺用适量减水剂,在保持坍落度不变的情况下,可减少单位用水量5%20%,从而增加了混凝土的密实度,提高混
14、凝土的强度和耐久性。减水率的高低是判断减水剂性能的重要指标。第24页,此课件共50页哦 泌水率比试验测量使用外加剂的混凝土泌水率与基准混凝土泌水率的比值,泌水率比反映外加剂使用后改善混凝土泌水现象的程度。先用湿布润湿容积为5升的带盖筒(内径为185mm,高200mm),将混凝土拌合物一次装入,在振动台上20s,然后用抹刀轻轻抹平,加盖以防水份蒸发。试样表面应比筒口边低约20mm,自抹面开始计算时间,在前60分钟,每隔10分钟,用吸液管吸水一次,以后每隔20分钟吸水一次,直至连续三次无泌水为止。每次吸水前5分钟,应将筒底一侧垫高约20mm,使筒体倾斜,以便于吸水。吸水后,将筒轻轻放平盖好。将每次
15、吸出的水都注放带塞的量筒,最后计算出总的泌水量,计算得出泌水率。第25页,此课件共50页哦坍落度1h经时变化量测定先测出机时坍落度,后装入加盖容器,1h后倒出拌匀后再测坍落度。计算坍落度变化量值越低,表明混凝土保留工作性能的时间长,减水剂性能越高。凝结时间差计算掺加外加剂的混凝土与基准混凝土的凝结时间差,反映外加剂影响混凝土凝结时间的程度,一般用于判断早强剂或缓凝剂的工作性能。第26页,此课件共50页哦抗压强度比以掺加外加剂混凝土与基准混凝土同龄期抗压强度之比表示反映外加剂对混凝土强度的作用能力。收缩率比以28d龄期时受检混凝土与基准混凝土的收缩率比值表示相对耐久性试验以掺外加剂混凝土冻融20
16、0次后的动弹性模量是否不小于80%来评定外加剂的质量第27页,此课件共50页哦外加剂的定义及分类混凝土减水剂的分类混凝土减水剂的技术指标水泥与减水剂相容性的试验方法影响水泥外加剂适应性的因素主要内容主要内容第28页,此课件共50页哦水泥与外加剂相容性试验水泥与外加剂相容性试验JC/T 1083-2008JC/T 1083-2008(水泥与减水剂相容性试验方法)(水泥与减水剂相容性试验方法)(水泥与减水剂相容性试验方法)(水泥与减水剂相容性试验方法)应用术语和定义:水泥与减水剂相容性:使用相同减水剂或水泥时,由于水泥或减水剂的质量而引起水泥浆体流动性、经时损失的变化程度以及获得相同的流动性减水剂
17、用量的变化程度基准减水剂:用于评价水泥与减水剂相容性的减水剂初始Marsh(马歇尔)时间:新拌水泥浆体通过Marsh筒注满200ml烧杯所用的时间第29页,此课件共50页哦60minMarsh时间:将水泥浆体放置60min后,重新搅拌后注满200ml烧杯所用时间初始流动度:固定量的新拌水泥浆体的最大扩展直径60min流动度:将水泥浆体放置60min后,重新搅拌后所测量的最大扩展直径减水剂饱和掺量点:当Marsh时间不再随减水剂掺量的增加而明显减少时或浆体流动度不再随减水剂掺量的增加而明显增加时所对应的减水剂掺量流动性经时损失率:经60min后,水泥浆体流动性的损失比率第30页,此课件共50页哦
18、试验条件 实验室温度应保持在202,相对湿度应不低于50%仪器设备 水泥净浆搅拌机,配备6只搅拌锅 圆模:上口直径36mm、下口直径60mm、高度60mm,内壁光滑无暗缝的金属制品 玻璃板:直径400mm、厚5mm 刮刀、游标卡尺、秒表、天平、烧杯、Marsh筒、量筒第31页,此课件共50页哦 Marsh筒法 Marsh筒为下带圆管的锥形漏斗,具体方法为让注入漏斗中的水泥浆体自由流下,记录注满200ml容量筒的时间,即Marsh时间,此时间的长短反映了水泥浆体的流动性净浆流动度试验 将制备好的水泥浆体装入一定容量的圆模后,稳定提起圆模,使浆体在重力作用下在玻璃板上自由扩展,稳定后的直径即流动度
19、,流动度的大小反映了水泥浆体的流动性。第32页,此课件共50页哦第33页,此课件共50页哦Marsh法(基准法)1、用湿布将Marsh筒、烧杯、搅拌锅、搅拌叶片全部润湿。将烧杯置于Marsh筒下料口的下面中间位置,并用湿布覆盖。2、将基准减水剂和约1/2的水同时加入锅中,然后用剩余的水反复冲洗盛装基准减水剂的容器直至干净并全部加入锅中,秤取5002g水泥,1751ml水,在5-10S内将水泥加入水中,把锅固定在搅拌机上,以低速搅拌120S,停15S,同时将叶片和锅壁上的水泥浆刮入锅中间,接着高速搅拌120S的程序制作净浆。第34页,此课件共50页哦Marsh法(基准法)3、将锅取下,用搅拌勺边
20、搅拌边将浆体立即全部倒入Marsh筒内,打开阀门,让浆体自由流下并计时,当浆体注入烧杯达到200ml时停止计时,此时间为初始Marsh时间。4、让Marsh筒内的浆体全部流下,无遗留的回收到搅拌锅内,并密封静置以防水分蒸发。5、清洁Marsh筒、烧杯。6、调整基准减水剂掺量,重复上述步骤,依次测定基准减水剂各掺量下的初始Marsh时间。7、自加水泥起到60min时,将静置的水泥浆体按上述搅拌程序重新搅拌,重复第三条,依次测定基准减水剂各掺量下的60minMarsh时间。第35页,此课件共50页哦净浆流动度法(代用法)1、玻璃板置于工作台上,并保持表面水平。2、用湿布将玻璃板、圆模内壁、搅拌锅、
21、搅拌叶片全部润湿。将圆模置于玻璃板的中间位置,并用湿布覆盖。3、将基准减水剂和约1/2的水同时加入锅中,然后用剩余的水反复冲洗盛装基准减水剂的容器直至干净并全部加入锅中,秤取5002g水泥,1451ml水,在5-10S内将水泥加入水中,把锅固定在搅拌机上,以低速搅拌120S,停15S,同时将叶片和锅壁上的水泥浆刮入锅中间,接着高速搅拌120S的程序制作净浆。第36页,此课件共50页哦净浆流动度法(代用法)4、将锅取下,用搅拌勺边搅拌边将浆体立即倒入置于玻璃板中间位置的圆模内,对于流动性差的浆体要用刮刀进行插捣,使浆体充满圆模,用刮刀将高出圆模的浆体刮除并抹平,立即稳定提起圆模。圆模提起后,应用
22、刮刀将粘附于圆模内壁上的浆体尽量刮下,以保证每次试验的浆体量基本相同,提取圆模1min后,用卡尺测量最长径及其垂直方向的直径,二者的平均值即为初始流动度。5、快速将玻璃板上的浆体用刮刀无遗留的回收到搅拌锅内,并密封静置防止水分蒸发。6、清洁玻璃板、圆模。7、调整基准减水剂掺量,重复上述步骤,依次测定基准减水剂各掺量下的初始流动度值。8、自加水泥60min时,将静置的水泥浆体按上述搅拌程序重新搅拌,重复第4条,依次测定基准减水剂各掺量下的60min流动度值。第37页,此课件共50页哦数据处理1、经时损失率:用初始流动度或Marsh时间与60min流动度或Marsh时间的相对差值表示,反映水泥使用
23、外加剂后随着时间,流动度损失的程度。2、饱和掺入点的确定:以减水剂掺量为横坐标、净浆流动度或Marsh时间为纵坐标做曲线图,然后做两直线段曲线的趋势线,两趋势线的交点的横坐标即为饱和掺量点。3、试验报告应给出水泥品种、生产单位、生产批号、基准减水剂信息、试验方法、饱和掺量点、基准减水剂0.8%掺量下的初始Marsh时间或流动度、基准减水剂0.8%掺量时的经时损失率。4、饱和掺量点越低,经时损失率越小的水泥减水剂适应性越好。第38页,此课件共50页哦GB/T 8077-2000 混凝土外加剂均质性试验方法水泥净浆流动度测定 使用水泥300g,水87g或105g,使用外加剂厂家推荐剂量的外加剂掺量
24、,搅拌3min,圆模提起后自由扩散30s后测量。此种方法简单易行,用于快速判断某一水泥与特定减水剂相容性的程度第39页,此课件共50页哦外加剂的定义及分类混凝土减水剂的分类混凝土减水剂的技术指标水泥与减水剂相容性的试验方法影响水泥外加剂适应性的因素主要内容主要内容第40页,此课件共50页哦水泥外加剂适应性不良的表现:外加剂对水泥工作性能改善不明显混凝土坍落度损失过大或混凝土过于快凝造成混凝土结构构件更易出现的裂缝第41页,此课件共50页哦影响水泥外加剂适应性的因素影响水泥外加剂适应性的因素1、水泥中四大主要矿物成分C3S、C2S、C3A、C4AF对高效减水剂的吸附能力是不一样的,其吸附顺序C3
25、AC4AFC3SC2S,因而在减水剂掺量相同的情况下,C3A和C4AF含量较高的水泥浆体中,减水剂的分散效果就较差。2、水泥熟料中的碱含量过高(碱含量0.8%)的水泥或碱含量过低(碱含量半水石膏二水石膏,使用硬石膏的水泥需水量大,吸附外加剂量大,外加剂损失量大。硬石膏对木钙类影响更加显著,甚至会出现急凝(假凝)现象,石膏研磨细度不够,会影响石膏的溶解性,从而影响缓凝效果,导致水泥的外加剂适应性不良。因此在水泥粉磨过程中,因磨机温度高,导致二水石膏脱水形成半水石膏,会影响水泥外加剂适应性。第43页,此课件共50页哦4、水泥中混合材的使用对水泥的外加剂适应性有影响,优质粉煤灰、矿渣的掺入能够与水泥
26、的水化产物Ca(OH)2 发生二次反应,降低混凝土的碱度,使外加剂与水泥的适应性有所改善。使用过细的粉煤灰,粉磨后比表面积大的煤矸石、火山灰、窑灰,表面会吸附大量的外加剂。同时混合材料的烧失量越高(即含碳量越大),碳粒粗大多孔,容易吸水,吸附外加剂的能力强,使外加剂的掺量增加。第44页,此课件共50页哦5、水泥的细度越细、比表面积越大,对减水剂的吸附量就越多,为达到同样的效果,必然要增加减水剂的用量。6、陈化时间越短,温度越高的水泥,由于带有大量电荷,吸附外加剂的数量多,减水效果差,因此使用刚出磨或出磨温度高的水泥,就会出现减水率低,坍落度损失快的现象。7、混凝土的搅拌时间过短会影响混凝土中的
27、含气量以及混凝土外加剂分散的匀质性,从而影响新拌混凝土的工作性。但如果搅拌速度过快,水泥颗粒表面形成的双电层膜受到剪切力的破坏,影响对外加剂的适应性。第45页,此课件共50页哦8、骨料的含泥量、泥块含量大,大量的粘土细粒会吸收更多的水份,消耗更多外加剂,使新拌混凝土和易性变差,容易离析,坍落度损失大,还影响混凝土强度。9、混凝土配合比不当,砂率不合理,也会增加坍落度的损失。砂率偏小,混凝土也容易离析、爬底,混凝土坍落度损失大;砂率偏大,过多的砂需要更多的水份润湿,使混凝土坍落度变小,也影响混凝土强度;骨料的级配不良,特别是缺少中间粒级的骨料,也容易造成混凝土离析、爬底,混凝土坍落度损失大,影响
28、混凝土质量。第46页,此课件共50页哦10、气温越高,风越大,砼坍落度损失越大。气温高,水泥水化反应快,外加剂的消耗加快,风越大,混凝土水份蒸发越快,加快了水泥颗粒之间的物理凝聚,混凝土坍落度损失越大。夏季气温太高时,可以采取对骨料浇水降温的办法,减小坍落度损失。第47页,此课件共50页哦改善外加剂对水泥适应性的措施改善外加剂对水泥适应性的措施改变外加剂的掺入时间,即采用后掺法或滞水法,这种方法效果比较明显。适当增加外加剂的掺量,增加混凝土中外加剂残留率也有比较明显的效果。掺入部分活性掺合料。试验证明具有一定活性的水硬性材料或自硬性材料,在满足一定的技术要求条件下与外加剂同掺,不但节约水泥,改
29、善混凝土工作性,提高混凝土强度,还能改善外加剂对水泥的适应性。第48页,此课件共50页哦正确设计调整混凝土配合比,在不影响工作性的前提下,保证石膏有一定的溶解度。有效控制液相中ca2+、OH一、SO 离子的平衡。采用多种复合外加剂。多品种外加剂的复合使用,不只是外加剂性能上的取长补短,更重要的是不同分子结构的外加剂同掺,由于分子间的相互作用,应用技术效果有较为明显的提高。将普通减水剂与高效减水剂同掺,在总掺量不变的情况下,减水率增加了1520。在减少15总用量情况下,减水增强性能不变,不但降低了成本,混凝土有些性能比单一掺用还有所提高,对水泥适应性也有所改善。第49页,此课件共50页哦参考资料参考资料GB 50119-2003 混凝土外加剂应用技术规范GB 8076-2008 混凝土外加剂GB/T 8077-2000 混凝土外加剂匀质性试验方法JC/T 1083-2008 水泥与减水剂相容性试验方法第50页,此课件共50页哦