《第二章杆件的内力截面法优秀课件.ppt》由会员分享,可在线阅读,更多相关《第二章杆件的内力截面法优秀课件.ppt(40页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、第二章杆件的内力截面法第1页,本讲稿共40页5-1 5-1 杆件的拉伸或压缩时的内力杆件的拉伸或压缩时的内力 受力特点:受力特点:力或合外力沿轴线方向力或合外力沿轴线方向 变形特点:变形特点:沿轴向伸长或缩短沿轴向伸长或缩短 直杆的轴向拉伸或压缩直杆的轴向拉伸或压缩一、一、轴向拉伸或压缩的概念轴向拉伸或压缩的概念计算简图计算简图压杆压杆拉杆拉杆材料力学电子课堂材料力学电子课堂材料力学电子课堂材料力学电子课堂第2页,本讲稿共40页二、二、轴力与轴力图轴力与轴力图a)假想地将构件沿截面)假想地将构件沿截面m-m处处 一一 分为二;分为二;b)取其中任一部分为研究对象取其中任一部分为研究对象;c)由
2、平衡条件由平衡条件 FN分布内力系的合力分布内力系的合力轴力轴力符号规定:拉为正符号规定:拉为正(+),压为负,压为负(-)求得内力求得内力外力不能沿作用线移动。因为材料力学中研究的对外力不能沿作用线移动。因为材料力学中研究的对 象是变形体,不是刚体,象是变形体,不是刚体,力的可传性不成立力的可传性不成立。对变。对变形体而言,力是定位矢量。形体而言,力是定位矢量。1、轴力轴力注意注意材料力学电子课堂材料力学电子课堂材料力学电子课堂材料力学电子课堂第3页,本讲稿共40页2、轴力图轴力图用用 平行于杆轴线的坐标平行于杆轴线的坐标 表示横截面的位置,用垂直于杆轴线的坐标表示横截面上表示横截面的位置,
3、用垂直于杆轴线的坐标表示横截面上的轴力数值,从而绘出表示轴力与横截面位置关系的图线,称为的轴力数值,从而绘出表示轴力与横截面位置关系的图线,称为 轴力图轴力图。将正的将正的轴力画在上侧,负的画在下侧。轴力画在上侧,负的画在下侧。解解:1)AB段:段:3)CD段段 轴力图轴力图2)BC段:段:由平衡方程由平衡方程得得得得由平衡方程由平衡方程材料力学电子课堂材料力学电子课堂材料力学电子课堂材料力学电子课堂由平衡方程由平衡方程得得第4页,本讲稿共40页轴力图轴力图2)BC段:段:解解:1)AB段:段:得得由平衡方程由平衡方程材料力学电子课堂材料力学电子课堂材料力学电子课堂材料力学电子课堂由平衡方程由
4、平衡方程得得第5页,本讲稿共40页1、用截面法求轴力时,取留下的一部分作受力图时,在切开的截面上建议、用截面法求轴力时,取留下的一部分作受力图时,在切开的截面上建议假假设正的轴力设正的轴力,由平衡方程得出的,由平衡方程得出的FN值为正,说明轴力为正(拉力);值为正,说明轴力为正(拉力);FN值为值为负,说明轴力为负(压力)。负,说明轴力为负(压力)。或或。2、在画轴力图时,填充为下画线或无填充,不要画剖面线形式;、在画轴力图时,填充为下画线或无填充,不要画剖面线形式;并注上并注上 符号符号注意注意材料力学电子课堂材料力学电子课堂材料力学电子课堂材料力学电子课堂第6页,本讲稿共40页5-2 5-
5、2 扭转的概念扭转的概念.扭矩与扭矩图扭矩与扭矩图一、一、扭转的概念扭转的概念1受力特征受力特征:在杆件两端垂直于杆轴线的平面:在杆件两端垂直于杆轴线的平面 内作用一对大小相等,方向相反内作用一对大小相等,方向相反 的外力偶。的外力偶。2变形特征变形特征:横截面形状大小未变,只是绕轴:横截面形状大小未变,只是绕轴 线发生相对转动。线发生相对转动。轴轴:以扭转为主要变形的构件称为轴:以扭转为主要变形的构件称为轴。计算简图计算简图材料力学电子课堂材料力学电子课堂材料力学电子课堂材料力学电子课堂第7页,本讲稿共40页二、二、外力偶矩的计算外力偶矩的计算已知:已知:P传递的功率传递的功率,(kw)n转
6、速转速,(r/min)求:外力偶矩求:外力偶矩Me(Nm)由此求得外力偶矩:由此求得外力偶矩:若传递功率单位为马力(若传递功率单位为马力(PS)时时,由于由于1PS=735.5Nm/sMeMe解:解:材料力学电子课堂材料力学电子课堂材料力学电子课堂材料力学电子课堂第8页,本讲稿共40页三、三、扭矩与扭矩图扭矩与扭矩图 1、扭矩扭矩扭矩的正负号规定:扭矩的正负号规定:按右手螺旋法则,按右手螺旋法则,T矢量背离截面为正,指向截面为负(或矢矢量背离截面为正,指向截面为负(或矢量与截面外法线方向一致为正,反之为负)量与截面外法线方向一致为正,反之为负)T称为截面称为截面n-n上的上的扭矩扭矩。用截面法
7、求扭矩时,建议均假设各截面扭矩用截面法求扭矩时,建议均假设各截面扭矩T为正,如果由平衡方为正,如果由平衡方程得到程得到T为正,则说明是正的扭矩,如果为负,则是负的扭矩。在为正,则说明是正的扭矩,如果为负,则是负的扭矩。在画轴的扭矩图,画轴的扭矩图,正的扭矩画在正的扭矩画在x x轴上方,负的扭矩画在轴上方,负的扭矩画在x x轴下方。轴下方。材料力学电子课堂材料力学电子课堂材料力学电子课堂材料力学电子课堂注意注意第9页,本讲稿共40页2、扭矩图扭矩图解:各轮上的外力偶矩:解:各轮上的外力偶矩:在在BCBC段内,假想以截面段内,假想以截面1-11-1将轴分成两部将轴分成两部分,取左半部分为研究对象分
8、,取左半部分为研究对象例:已知:传动轴,例:已知:传动轴,n=300r/min,PA=36kW,PB=PC=11kW,PD=14kW。试画出。试画出轴的扭矩图。轴的扭矩图。同理,同理,CA段:段:ADAD段:段:扭矩图扭矩图材料力学电子课堂材料力学电子课堂材料力学电子课堂材料力学电子课堂第10页,本讲稿共40页5-3 弯曲的概念.剪力与弯矩受力特点受力特点:在包含杆轴的纵向平面内作用一对大小相等、方向相反:在包含杆轴的纵向平面内作用一对大小相等、方向相反 的力偶或在垂直于杆件轴线方向作用横向力。的力偶或在垂直于杆件轴线方向作用横向力。变形特点变形特点:杆件轴线由直线变为曲线。:杆件轴线由直线变
9、为曲线。一、弯曲的概念一、弯曲的概念以以弯曲变形弯曲变形为主要变形的杆件。为主要变形的杆件。梁梁材料力学电子课堂材料力学电子课堂材料力学电子课堂材料力学电子课堂第11页,本讲稿共40页对称弯曲对称弯曲:工程中最常见的梁,其横截面一般至少有一根对称轴,因而整个杆件有一个包含轴线的工程中最常见的梁,其横截面一般至少有一根对称轴,因而整个杆件有一个包含轴线的纵纵向对称面向对称面。若所有外力都作用在该纵向对称面内时,梁弯曲变形后的轴线将是位于。若所有外力都作用在该纵向对称面内时,梁弯曲变形后的轴线将是位于该平面内的一条曲线,这种弯曲形式称为该平面内的一条曲线,这种弯曲形式称为对称弯曲对称弯曲(或(或平
10、面弯曲平面弯曲)。)。非对称弯曲非对称弯曲:梁不具有纵向对称面,或具有纵向对称面,但外力并不:梁不具有纵向对称面,或具有纵向对称面,但外力并不 作用在纵向对称面内这种弯作用在纵向对称面内这种弯 曲称为曲称为非对称弯曲非对称弯曲。材料力学电子课堂材料力学电子课堂材料力学电子课堂材料力学电子课堂纵向对称面纵向对称面对称轴对称轴轴线轴线变形后的轴线变形后的轴线第12页,本讲稿共40页二、梁的计算简图二、梁的计算简图 简支梁简支梁:一端为固定铰支座,而另一端为可一端为固定铰支座,而另一端为可动铰支座,如右图动铰支座,如右图a a所示。所示。悬臂梁悬臂梁:一端为固定端,另一端为自由端的梁,一端为固定端,
11、另一端为自由端的梁,如右图如右图b b所示。所示。外伸梁外伸梁:一端伸出支座之外的梁,如右图一端伸出支座之外的梁,如右图c c所示。所示。静定梁静定梁:梁的所有支座反力均可由静力平衡方程确定。梁的所有支座反力均可由静力平衡方程确定。跨跨:梁在两支座之间的部分称为跨,其长度称为梁的跨长。梁在两支座之间的部分称为跨,其长度称为梁的跨长。材料力学电子课堂材料力学电子课堂材料力学电子课堂材料力学电子课堂第13页,本讲稿共40页三、弯曲内力三、弯曲内力 1 1、由梁的静力平衡方程求两端的支座反力、由梁的静力平衡方程求两端的支座反力FA、FB2 2、用假想截面、用假想截面m-m将梁分为两部分,并以左段为研
12、究对象将梁分为两部分,并以左段为研究对象 ;FS称称为为横横截截面面m-m上上的的剪剪力力,它它是是与与横横截截面面相相切切的的分分布布内内力系的合力。力系的合力。M称称为为横横截截面面m-m上上的的弯弯矩矩。它它是是与与横横截截面面垂垂直直的的分分布布内内力系的合力偶矩。力系的合力偶矩。FSMFSM材料力学电子课堂材料力学电子课堂材料力学电子课堂材料力学电子课堂y第14页,本讲稿共40页剪力与弯矩的符号规定:剪力与弯矩的符号规定:弯矩弯矩:下凸为正,下凸为正,反之为负反之为负剪力剪力:“左上右下左上右下”为正,为正,反之为负反之为负剪力对所取梁段内任意一点的矩为顺剪力对所取梁段内任意一点的矩
13、为顺时针,为正剪力,反之为负(顺为正,时针,为正剪力,反之为负(顺为正,逆为负)。逆为负)。固定截面,若外力或外力偶使梁产生上固定截面,若外力或外力偶使梁产生上挑的变形,则该力或力偶在截面上产生挑的变形,则该力或力偶在截面上产生正的弯矩,反之为负的弯矩(上挑为正,正的弯矩,反之为负的弯矩(上挑为正,下压为负)。下压为负)。材料力学电子课堂材料力学电子课堂材料力学电子课堂材料力学电子课堂第15页,本讲稿共40页解:解:1.1.求支座反力求支座反力FSDMD得得2.2.求截面求截面1 11 1上的内力上的内力同理同理,对于对于C C左左截面:截面:MC右右FSC右右对于对于C C右右截面:截面:平
14、衡方程求解内力的正负号表示假设方向平衡方程求解内力的正负号表示假设方向与实际方向关系。与实际方向关系。在集中力作用处,左右截面上剪力发生在集中力作用处,左右截面上剪力发生突变,突变值为该集中力的大小;而弯突变,突变值为该集中力的大小;而弯矩保持不变。矩保持不变。材料力学电子课堂材料力学电子课堂材料力学电子课堂材料力学电子课堂例例1 1 如图所示的简支梁,试求如图所示的简支梁,试求1 11 1及及C左右截面上的内力。左右截面上的内力。第16页,本讲稿共40页 求截面求截面F FS S和和M M时,均按规定正向假设,时,均按规定正向假设,这样这样求出的剪力为正号即表明该截面上的剪力为正的剪力,如求
15、出的剪力为正号即表明该截面上的剪力为正的剪力,如为负号则表明为负的剪力。对于弯矩正负号也作同样判断。为负号则表明为负的剪力。对于弯矩正负号也作同样判断。建议建议第17页,本讲稿共40页解:解:1.1.求支反力求支反力2.2.求截面求截面C的内力的内力注:对悬臂梁,可取截面到自由端部分为研究对象,可省略求支反力注:对悬臂梁,可取截面到自由端部分为研究对象,可省略求支反力3.3.求距求距A为为x处截面的内力处截面的内力MCFSCMxFSx材料力学电子课堂材料力学电子课堂材料力学电子课堂材料力学电子课堂例例2 2 如图所示的悬臂梁,求截面如图所示的悬臂梁,求截面C及距及距A端为端为x处截面的内力。处
16、截面的内力。第18页,本讲稿共40页5-4 剪力图和弯矩图一、剪力、弯矩方程一、剪力、弯矩方程若以横坐标若以横坐标x表示横截面在梁轴线上的位置,则各横截面上的剪力和弯矩表示横截面在梁轴线上的位置,则各横截面上的剪力和弯矩,可以可以表示为表示为x的函数,称为剪力和弯矩方程,即的函数,称为剪力和弯矩方程,即三、根据剪力方程和弯矩方程画出剪力图和弯矩图的步骤三、根据剪力方程和弯矩方程画出剪力图和弯矩图的步骤 第一,求支座反力。第一,求支座反力。第二,根据截荷情况分段列出第二,根据截荷情况分段列出FS(x)和和M(x)方程。方程。在集中力(包括支座反力)在集中力(包括支座反力)、集中力偶和分布载荷的起
17、止点处,剪力方程和弯矩、集中力偶和分布载荷的起止点处,剪力方程和弯矩方程可能发生变化,所以这些点均为剪力方程和弯矩方程的分段点,对应的截面称为方程可能发生变化,所以这些点均为剪力方程和弯矩方程的分段点,对应的截面称为控制截面。控制截面。第三,求控制截面内力,作第三,求控制截面内力,作FS、M图。一般每段的两个端点截面为控制截面。在图。一般每段的两个端点截面为控制截面。在有均布载荷的段内,有均布载荷的段内,FS=0的截面处弯矩为极值,也作为控制截面求出其弯矩值。将控的截面处弯矩为极值,也作为控制截面求出其弯矩值。将控制截面的内力值标在坐标的相应位置处制截面的内力值标在坐标的相应位置处 。分段点之
18、间的图形可根据剪力方程和。分段点之间的图形可根据剪力方程和弯矩方程绘出。并注明弯矩方程绘出。并注明 的数值。的数值。二、剪力图及弯矩图二、剪力图及弯矩图 一般情况下,梁横截面上的剪力和弯矩随截面位置不同而变化,将剪力和弯矩沿梁轴线的变化情况用图一般情况下,梁横截面上的剪力和弯矩随截面位置不同而变化,将剪力和弯矩沿梁轴线的变化情况用图形表示出来,这种图形分别称为形表示出来,这种图形分别称为剪力图剪力图和和弯矩图弯矩图第19页,本讲稿共40页例例3 3 试画出如图示简支梁试画出如图示简支梁AB的剪力图和弯矩图。的剪力图和弯矩图。解:解:1.1.求支反力,由求支反力,由得得2.2.列剪力、弯矩方程列
19、剪力、弯矩方程 在在AC段内,段内,在在BC段内段内集中力作用处剪力图有突变,变化值等于集中力的大集中力作用处剪力图有突变,变化值等于集中力的大小小弯矩图上无突变,但斜率发生突变,折角点弯矩图上无突变,但斜率发生突变,折角点在某一段上若无载荷作用,剪力图为一水在某一段上若无载荷作用,剪力图为一水平线,弯矩图为一斜直线。平线,弯矩图为一斜直线。材料力学电子课堂材料力学电子课堂材料力学电子课堂材料力学电子课堂第20页,本讲稿共40页例例4 4 受均布载荷作用的简支梁,如下图所示,作梁的剪力图和弯矩图。受均布载荷作用的简支梁,如下图所示,作梁的剪力图和弯矩图。解:解:1.1.求支反力求支反力2.2.
20、列剪力、弯矩方程列剪力、弯矩方程FAyFByFAyFSM材料力学电子课堂材料力学电子课堂材料力学电子课堂材料力学电子课堂3.3.求控制截面处的剪力和弯矩求控制截面处的剪力和弯矩4.4.作剪力图和弯矩图作剪力图和弯矩图在梁段上作用分布载荷,剪力图为一斜直线,弯矩图为一抛物线。且弯矩在梁段上作用分布载荷,剪力图为一斜直线,弯矩图为一抛物线。且弯矩M最大值发生于最大值发生于F FS S=0=0处。处。可见可见第21页,本讲稿共40页例例5 5 如图示的简支梁,试作梁的剪力图和弯矩图。如图示的简支梁,试作梁的剪力图和弯矩图。解:解:1.1.求支反力,由求支反力,由2.2.求内力求内力在在ACAC段内段
21、内在在BCBC段内段内得得3.3.画剪力图和弯矩图画剪力图和弯矩图FAyFByFS1M1FAyFS2M2FBy在集中力偶作用处,弯矩图上发生突变,在集中力偶作用处,弯矩图上发生突变,突变值为突变值为:而剪力图无改变而剪力图无改变材料力学电子课堂材料力学电子课堂材料力学电子课堂材料力学电子课堂第22页,本讲稿共40页注意注意x取值范围等号的取法:取值范围等号的取法:1.1.在集中力作用处在集中力作用处(剪力图中有突变剪力图中有突变),剪力方程中,剪力方程中x的取值没有等号;的取值没有等号;2.2.在集中力偶作用处在集中力偶作用处(弯矩图中有突变弯矩图中有突变),弯矩方程中,弯矩方程中x的取值没有
22、等号;的取值没有等号;3.3.对于某一截面,在无限接近的范围内,左右相等才有对于某一截面,在无限接近的范围内,左右相等才有“”,”,即剪即剪力图和弯矩图为连续时才有等号。力图和弯矩图为连续时才有等号。(0 xa),(axl)材料力学电子课堂材料力学电子课堂材料力学电子课堂材料力学电子课堂第23页,本讲稿共40页v集中力作用处剪力图有突变,变化值等于集中力的大小集中力作用处剪力图有突变,变化值等于集中力的大小;弯矩图上无突变,但斜率发生突变,弯矩图上为折角点。弯矩图上无突变,但斜率发生突变,弯矩图上为折角点。v在某一段上若无载荷作用,剪力图为一水平线,弯矩图为一斜直线。在某一段上若无载荷作用,剪
23、力图为一水平线,弯矩图为一斜直线。v在某一段上作用分布载荷,剪力图为一斜直线,弯矩图为一抛物线。在某一段上作用分布载荷,剪力图为一斜直线,弯矩图为一抛物线。且弯矩且弯矩M最大值发生于最大值发生于FS=0处。处。v在集中力偶作用处,弯矩图上发生突变,突变值为该集中力偶的大小在集中力偶作用处,弯矩图上发生突变,突变值为该集中力偶的大小而剪力图无改变。而剪力图无改变。总结总结材料力学电子课堂材料力学电子课堂材料力学电子课堂材料力学电子课堂第24页,本讲稿共40页 5-5 剪力、弯矩及载荷集度间的微分关系规定:分布载荷规定:分布载荷q向上为正。向上为正。解:考虑解:考虑dx段的平衡段的平衡第二式中最后
24、一项为高阶微量,可以略去,故得第二式中最后一项为高阶微量,可以略去,故得上式再对上式再对x一次微分,得一次微分,得第25页,本讲稿共40页 以上三式给出了以上三式给出了q(x)、FS(x)、M(x)间的导数关系间的导数关系。它表明:它表明:1、剪力图上某点处的斜率等于梁在该点处荷载集度、剪力图上某点处的斜率等于梁在该点处荷载集度q(x)的大小。的大小。2、弯矩图上某点处的斜率等于梁在该点处剪力、弯矩图上某点处的斜率等于梁在该点处剪力F(x)的大小。的大小。3 3、弯矩图上某点处的斜率变化率等于梁在该点处的分布载荷集度。、弯矩图上某点处的斜率变化率等于梁在该点处的分布载荷集度。4 4、利用导数关
25、系,经过积分得、利用导数关系,经过积分得 以上两式表明,在以上两式表明,在x=x2 2和和x=x1 1两截面上的剪力之差,等于两截面间载荷两截面上的剪力之差,等于两截面间载荷图的面积;两截面上的弯矩之差,等于两截面间剪力图的面积。图的面积;两截面上的弯矩之差,等于两截面间剪力图的面积。第26页,本讲稿共40页梁段上无荷载作用,即梁段上无荷载作用,即 q(x)0时,时,剪力剪力FS(x)=C(常数),常数),剪力图为剪力图为一条水平直线;一条水平直线;xFS(x)oxoM(x)弯矩弯矩M(x)C C x D D,即弯矩为即弯矩为x的一次函数,的一次函数,弯矩图弯矩图为一斜直线,为一斜直线,当当F
26、S 00时,弯矩图时,弯矩图(/)(/);当当FS 00时,弯矩图时,弯矩图()()。xFS(x)oq(x)、FS(x)、M(x)间间图三者间的关系图三者间的关系xoM(x)第27页,本讲稿共40页剪力剪力FS(x)为为x的一次函数的一次函数,剪力图为斜直线,剪力图为斜直线,而弯矩而弯矩M(x)为为x的二次函数,弯矩图为抛物线。的二次函数,弯矩图为抛物线。若若q(x)=常数,常数,当当q 00,0,剪力图为剪力图为一向右一向右上上方倾斜的直线方倾斜的直线,M(x)图为一图为一向向下下凸的二次抛物线。凸的二次抛物线。xFS(x)oxFS(x)oxoM(x)xoM(x)第28页,本讲稿共40页若某
27、截面的剪力若某截面的剪力 ,根据根据 ,该截面的弯矩为极值。该截面的弯矩为极值。在集中力在集中力F作用处,剪力图有突变作用处,剪力图有突变,突变值等于突变值等于集中力集中力F F的大小,弯矩图为折角点;在集中力偶的大小,弯矩图为折角点;在集中力偶M作用处,剪力图不变,弯矩图有突变,突变作用处,剪力图不变,弯矩图有突变,突变值等于力偶矩值等于力偶矩M。FSmax出现的地方:出现的地方:集中力集中力F作用处;作用处;支座处;支座处;Mmax出现的地方:出现的地方:剪力剪力FS=0的截面;的截面;集中力集中力F作用处;作用处;集中力偶集中力偶M作用处。作用处。第29页,本讲稿共40页利利用用以以上上
28、各各点点,除除可可以以校校核核已已作作出出的的剪剪力力图图和和弯弯矩矩图图是是否否正正确确外外,还还可可以以利利用用微微分分关关系系绘绘制制剪剪力力图图和和弯弯矩矩图图,而而不不必必再再建建立立剪剪力力方方程程和和弯弯矩矩方方程程,其步骤如下:其步骤如下:1 1求支座反力;求支座反力;2 2分段确定剪力图和弯矩图的形状;分段确定剪力图和弯矩图的形状;3 3求控制截面内力,根据微分关系绘剪力图和弯矩图;求控制截面内力,根据微分关系绘剪力图和弯矩图;4 4确定确定 和和 。第30页,本讲稿共40页一段梁上一段梁上的外力情的外力情况况剪力图的特征剪力图的特征弯矩图的特征弯矩图的特征最大弯矩所在最大弯
29、矩所在截面的可能位截面的可能位置置表表 5-1 在几种荷载下剪力图与弯矩图的特征在几种荷载下剪力图与弯矩图的特征q0向下的均布向下的均布荷载荷载无荷载无荷载集中力集中力FC集中力偶集中力偶mC上凸的二次上凸的二次抛物线抛物线在在FS=0的截面的截面一般斜直线一般斜直线或或在在C处有突变处有突变F在在C处有尖角处有尖角或或在剪力突变的在剪力突变的截面截面在在C处无变化处无变化C在在C处有突变处有突变m在紧靠在紧靠C的某一的某一侧截面侧截面向右下倾斜向右下倾斜的直线的直线 水平直线水平直线 第31页,本讲稿共40页例例6 6 如图示一外伸梁,试作出梁的剪力图和弯矩图。如图示一外伸梁,试作出梁的剪力
30、图和弯矩图。解:解:1.1.求支反力求支反力2.2.画剪力图画剪力图在在AC段,段,q=0,该段剪力图,该段剪力图(-)(-)在在AB段,段,q=C0,该段剪力图,该段剪力图()()在在A点,因有反力点,因有反力FA,剪力图有突,剪力图有突 变,突变值为变,突变值为=FA。3.3.画弯矩图画弯矩图在在CA段,段,q=0,FS0,弯矩图,弯矩图()();在在AB段,段,q=C0,弯矩图弯矩图()();在;在FS=0的截面处,的截面处,M图取极值;图取极值;在在A点,因有力偶点,因有力偶m,弯矩图有突,弯矩图有突 变,突变值为变,突变值为=m 。第32页,本讲稿共40页例例7 7如图示一外伸梁,试
31、作出梁的剪力图和弯矩图。如图示一外伸梁,试作出梁的剪力图和弯矩图。第33页,本讲稿共40页例例9 9 已知简支梁的剪力图如图所示。作梁的弯矩图和荷载图。已知梁上没有集中力偶作用。已知简支梁的剪力图如图所示。作梁的弯矩图和荷载图。已知梁上没有集中力偶作用。第34页,本讲稿共40页例例8 8 试作下列具有中间铰的梁的剪力图和弯矩图。试作下列具有中间铰的梁的剪力图和弯矩图。第35页,本讲稿共40页 5-7 平面刚架与平面曲杆的弯矩内力平面刚架与平面曲杆的弯矩内力静定刚架静定刚架:凡未知反力和内力能由静力凡未知反力和内力能由静力学平衡条件确定的刚架。学平衡条件确定的刚架。刚架刚架:杆系结构若在节点处为
32、刚性连接,则这种结构称为刚架。:杆系结构若在节点处为刚性连接,则这种结构称为刚架。平面刚架的内力平面刚架的内力:剪力、弯矩、轴力剪力、弯矩、轴力平面刚架平面刚架:由在同一平面内、不同取向的杆件,通过杆端相互刚性连接而组:由在同一平面内、不同取向的杆件,通过杆端相互刚性连接而组 成的结构。成的结构。各杆连接处称为各杆连接处称为刚节点刚节点。刚架变形时,刚节点处各杆轴线之间的夹角保持不变。刚架变形时,刚节点处各杆轴线之间的夹角保持不变。弯弯矩矩图图:画画在在各各杆杆的的受受压压一一侧侧,不不注注明明正正、负负号。号。剪剪力力图图及及轴轴力力图图:可可画画在在刚刚架架轴轴线线的的任任一一侧侧(通常正
33、值画在刚架外侧),注明正负号。(通常正值画在刚架外侧),注明正负号。第36页,本讲稿共40页例例10 试绘出如图所示刚架的弯矩图和轴力图试绘出如图所示刚架的弯矩图和轴力图 对对C CA段距右端为段距右端为x1的截面的截面对对BA段距段距B端为端为x2的截面的截面第37页,本讲稿共40页解:用任意横截面取右段,解:用任意横截面取右段,例例1111如图曲杆,轴线为如图曲杆,轴线为1/4圆弧,半径为圆弧,半径为R,受垂直向下的载荷,受垂直向下的载荷P的作用,的作用,试画出其内力图。试画出其内力图。对于曲杆,内力的符号规定为:引起拉对于曲杆,内力的符号规定为:引起拉伸变形的轴力为正;使轴线曲率增加伸变
34、形的轴力为正;使轴线曲率增加(即外侧受拉)的弯矩为正;对所取杆(即外侧受拉)的弯矩为正;对所取杆段内任一点,若剪力对该点之力矩为顺段内任一点,若剪力对该点之力矩为顺时针转向,则剪力为正。时针转向,则剪力为正。平面曲杆平面曲杆:轴线为一平面曲线的杆:轴线为一平面曲线的杆 第38页,本讲稿共40页杆件内力的一般描述杆件内力的一般描述xxyFRMFzFyFxMzMyMx杆件在外力作用下产生变形,研究任一横杆件在外力作用下产生变形,研究任一横截面截面m-m上的内力。用截面法假想地将杆上的内力。用截面法假想地将杆件沿件沿m-m截面截断,取左边的部分截面截断,取左边的部分mm横截面横截面m-m上的内力为分
35、布力系上的内力为分布力系将分布力系向截面形心简化,得:将分布力系向截面形心简化,得:主矢主矢Fx和主矩和主矩M主矢和主矩在确定的坐标方向上的分主矢和主矩在确定的坐标方向上的分量,每一分量对应引起相应的一种基量,每一分量对应引起相应的一种基本变形本变形Fx与轴线重合,引起轴向变形,称为与轴线重合,引起轴向变形,称为轴力轴力;Fy、Fz与截面平行,引起剪切变形,称为与截面平行,引起剪切变形,称为剪力剪力;Mx作用面与截面平行,使杆件产生绕轴线的扭转变形,称为作用面与截面平行,使杆件产生绕轴线的扭转变形,称为扭矩扭矩;My、Mz作用面与截面垂直,均使杆件产生弯曲变形,称为作用面与截面垂直,均使杆件产生弯曲变形,称为弯矩弯矩。第39页,本讲稿共40页EXEX 已知外伸梁的剪力图和弯矩图,试作出梁的荷载图。已知外伸梁的剪力图和弯矩图,试作出梁的荷载图。做做看做做看第40页,本讲稿共40页