《中学数学关键八年级初二之考点各个击破第9讲一次函数上.doc》由会员分享,可在线阅读,更多相关《中学数学关键八年级初二之考点各个击破第9讲一次函数上.doc(9页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、一次函数 爱护环境,从我做起,提倡使用电子讲义 一次函数 一、知识要点: 1、通过实际问题,感受一次函数、正比例函数的特点 2、理解一次函数、正比例函数的特征 看看我们身边的例子: 1、小张准备将平时的零用钱节约一些储存起来他已存有 50 元,从现在起每个月节存 12 元试写 出小张的存款数 M 与从现在开始的月份数 x 之间的函数关系式 2、小红每天做 5 道数学课外练习,试写出小红所做题目的总数 y 和练习天数 x 之间的函数关系式 3、仓库内原有粉笔 400 盒,如果每个星期领出 36 盒,求仓库内余下的粉笔盒数 Q 与星期数 t 之间的 函数关系式 4、 容积为 30m3 的水池中已有
2、水 10m, 现在以 5m3/分钟的速度向水池注水, 写出水池中水的容积 y m3) (与注水时间 x(分钟)之间的函数关系式 5、写出多边形的内角和 S(度)与它的边数 n 的函数关系式 ,自变量 n 可取哪些数 值? 6、小明暑假第一次去北京汽车驶上 A 地的高速公路后,小明观察里程碑,发现汽车的平均速度是 95 千米/时已知 A 地直达北京的高速公路全程 570 千米,小明想知道汽车从 A 地驶出后,距北京 的路程 S(千米)和汽车在高速公路上行驶的时间 t(小时)有什么关系,你能告诉他吗? 环节二:探索新知: 1、 观察上面所列的七个函数关系式, (1)你能找出他们的共同点或者特征吗?
3、跟你的组员交流一下 (2)如果自变量用 x 表示,函数用 y 表示,你能用一个式子来表示这些特征吗? 2、 完成下面的练习: (1)如果 y 是 a 的一次函数,则 y 与 a 之间的函数关系式可表示为 (2)如果 m 是 n 的正比例函数,则 m 与 n 之间的函数关系式可表示为_ (3)请写出一个正比例函数 ,一个一次函数 强化训练A 组 1、判断正误: 1)一次函数是正比例函数; ( ) (2)正比例函数是一次函数; () (3)x2y5 是一次函数; () (4)2yx=0 是正比例函数 () 2、选择题 (1)下列说法不正确的是( )A一次函数不一定是正比例函数. B不是一次函数就不
4、一定是正比例函数. C正比例函数是特殊的一次函数. D不是正比例函数就一定不是一次函数. 第 1页 (2)下列函数中一次函数的个数为( )y=2x;y=3+4x;y= 1 ;y=ax(a 0 的常数) xy=3;2x+3y1=0; ; 2A3 个 B4 个 C5 个 D6 个 (3)设圆的面积为 S,半径为 R,那么下列说法正确的是( )AS 是 R 的一次函数 BS 是 R 的正比例函数 CS 是 R2 的正比例函数 D以上说法都不正确 3、填空题 (1)若函数 y=(m2)x+5 是一次函数,则 m 满足的条件是_. (2)当 m=_时,函数 y=(3+m)x2+x+3 是一次函数,则 m
5、=_ (3)关于 x 的一次函数 y=x+5m5,若使其成为正比例函数,则 m 应取_. 4、已知函数 y= (m + 1)x + m2 - 1 当 m 取什么值时,y 是 x 的一次函数?当 m 取什么值是,y 是 x 的 ()正比例函数. 5、 1)函数:y=2x+3;x+y=1;xy=1;y= x + 1;y= (数的有 ,属正比例函数的有 (只填序号) (2)当 m= 时,y= m2 - 1 x 2 + (m - 1)x + m 是一次函数. ()(3)请写出一个正比例函数,且 x=2 时,y=6 请写出一个一次函数,且 x=6 时,y=2 1 x2 +1;y=0.5x 中,属一次函
6、2(4)我国是一个水资源缺乏的国家,大家要节约用水据统计,拧不紧的水龙头每秒钟会滴下 2 滴 水,每滴水约 0.05 毫升李丽同学在洗手时,没有把水龙头拧紧,当李丽同学离开 x 小时后水龙头滴 了 y 毫升水则 y 与 x 之间的函数关系式是 6、说出下面两个问题中两个量的函数关系,并指出它们是不是正比例函数,是不是一次函数. 汽车以 40 千米/小时的平均速度从 A 站出发,行驶了 t 小时,那么汽车离开 A 站的距离 S(千米) 和时间 t(小时)之间的函数关系是什么?的函数关系式为 ,它是 函数汽车离开 A 站 4 千米,再以 40 千米小时的平均速度行驶了 t 小时,那么汽车离开 A
7、站的距离 S(千米)与时间 t(小时)之间的函数关系是什么?的函数关系式为 ,它是 函数 7、曾子伟叔叔的庄园里已有 50 棵树,他决定今后每年栽 2 棵树,则曾叔叔庄园树木的总数 y(棵) 与年数 x 的函数关系式为 ;它是 函数 8、 圆柱底面半径为 5cm, 则圆柱的体积 V cm3) (与圆柱的高 h cm) (之间的函数关系式为 ,它是 函数 9、甲市到乙市的包裹邮资为每千克 0.9 元,每件另加手续费 0.2 元,求总邮资 y(元)与包裹重量 x 第 2页 (千克)之间的函数解析式,并计算 5 千克重的包裹的邮资. 10、在拖拉机油箱中,盛满 56 千克油,拖拉机工作时,每小时平均
8、耗油 6 千克,求邮箱里剩下 Q(千 克)与拖拉机的工作时间 t(小时)之间的函数解析式. B 组 11、照我国税法规定:个人月收入不超过 800 元,免缴个人所得税超过 800 元不超过 1 300 元部分 需缴纳 5%的个人所得税试写出月收入在 800 元到 1 300 元之间的人应缴纳的税金 y(元)和月收入 x(元)之间的函数关系式 12、容祖贤的爸爸为祖贤存了一份教育储蓄.首次存入 1 万元,以后每个月存入 500 元,存满 3 万元 止.求存款数增长的规律.几个月后可存满全额? 解:设 x 个月后存款为 y 元,则 y 与 x 之间的函数关系式为 ;把 y= 代入上式,得 解得 x
9、= 答: 个月可存满全额 C 组 13、已知地面温度是 20,如果从地面开始每升高 1km,气温下降 6,那么 ()与海拔高度 h(km) t的函数关系式是 14、某油库有一没储油的储油罐,在开始的 8 分钟时间内,只开进油管,不开出油管,油罐的进油至 24 吨后,将进油管和出油管同时打开 16 分钟,油罐中的油从 24 吨增至 40 吨随后又关闭进油管, 只开出油管,直至将油罐内的油放完假设在单位时间内进油管与出油管的流量分别保持不变写出 这段时间内油罐的储油量 y(吨)与进出油时间 x(分)的函数式及相应的 x 取值范围 (在第一阶段: y=3x(0 x 8) ;在第二阶段: y=16x(
10、8 x 16) ;在第三阶段: y=2x88(24 x 44) 15、已知 y 与 x - 3 成正比例,当 x = 4 时, y = 3 写出 y 与 x 之间的函数关系式; y 与 x 之间 是什么函数关系; 求 x=2.5 时,y 的值 第 3页 一次函数的图象 一、知识要点: 1.动手画一次函数的图象,了解一次函数图象的形状 2.一次函数图象的性质 画画一次函数的图象 1、请在同一个平面直角坐标系中画出了下列函数的图象. (1) y = 1x 2xy = 1x+2 2y = 1 x 3 2y=1x 2y = 1x+2 2y = 1 x 3 2(2) y=3x; y=3x+2; y=3x
11、3 xy=3x y=3x +1 y=3x +1 第 4页 探讨一次函数图象的形状及其性质 1、通过画图,我们可以发现: 一次函数 ykxb(k 0)的图象是 特别地,正比例函数 ykx(k 0)的图象是经 过的一条 根据_点确定一条直线,以后我们画一次函数图象时,只需确定 个点 二点法的练习: (书上的例 1) 例 1、在同一平面直角坐标系中画出下列每组函数的图象 (1)y2x 与 y2x3 xy2x y2x3 (2)y2x1 与 y = 1 x + 1 2解y2x1 y = 1 x +1 2 第 5页 2、对于函数 ykxb (k、b 是常数,k 0) ,常数 k 和 b 的取值对于图象的位
12、置各有什么影响呢? (1)当 k 相同,b 不相同时(如 y3x、y=3x2、y=3x3) ,有 共同点:_; 不同点:_ (2)当 b 相同,k 不相同时(如 y3x+2 与 y 1 x 2; y = 1 x 3 与 y=3x3) ,有: 22共同点:_; 不同点:_ 3、直线 y3x 和 y=3x2、y=3x3 的位置关系是 ,直线 y=3x3 可以看作是直 线 y3x 向 平移 个单位得到的;直线 y=3x2 可以看作是直线 y3x 向 平移 个单位得到的 二、强化训练A 组 1、 在同一平面直角坐标系中画出下列每组函数的 图象 y2x 与 y2x3 xy2x y2x3 解 第 6页 2
13、、说出直线 y3x2 与 y = 1 x + 2 ;y5x1 与 y5x4 的相同之处 2解:直线 y3x2 与 y = 1 x+2的 2,相同,所以这两条直线 ,同一点,且交点 坐标 ;直线 y5x1 与 y5x4 的 相同,所以这两条直线 3、 1)直线 y = - (1 x + 3, y = - 1 x - 5 和 y = - 1 x 的位置关系是 222,直线 y = - 1 x + 3, y = - 1 x - 5 可以看作是直线 y = - 1 x 向 平移 个单位得到的;向 222平移 个单位得到的 (2)将直线 y2x3 向下平移 5 个单位,得到直线 (3)函数 ykx4 的图象平行于直线 y2x,求函数若直线 y = kx - 4 的解析式为 ;(4)直线 y=2x3 可以由直线 y=2x 经过 单位而得到;直线 y=3x+2 可以由直线 y=3x 经过 而得到;直线 y=x+2 可以由直线 y=x3 经过 而得到 (5)直线 y=2x5 与直线 y = B 组 1 x + 5 ,都经过 y 轴上的同一点( 2、)4、写出一条与直线 y=2x3 平行的直线 5、写出一条与直线 y=2x3 平行,且经过点(2,7)的直线 6、直线 y=5x+7 可以看作是由直线 y=5x1 向 平移 个单位得到的 第 7页