《最新《我国财政收入影响因素分析》-计量经济学论文(eviews分析).doc》由会员分享,可在线阅读,更多相关《最新《我国财政收入影响因素分析》-计量经济学论文(eviews分析).doc(120页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、Four short words sum up what has lifted most successful individuals above the crowd: a little bit more.-author-date我国财政收入影响因素分析-计量经济学论文(eviews分析)计量经济学上机作业我国财政收入影响因素分析班级: 姓名: 学号:指导教师: 完成时间: 摘要:对我国财政收入影响因素进行了定量分析,建立了数学模型,并提出了提高我国财政收入质量的政策建议。关键词:财政收入 实证分析 影响因素一、 引言财政收入对于国民经济的运行及社会发展具有重要影响。首先,它是一个国家各项收入
2、得以实现的物质保证。一个国家财政收入规模大小往往是衡量其经济实力的重要标志。其次,财政收入是国家对经济实行宏观调控的重要经济杠杆。宏观调控的首要问题是社会总需求与总供给的平衡问题,实现社会总需求与总供给的平衡,包括总量上的平衡和结构上的平衡两个层次的内容。财政收入的杠杆既可通过增收和减收来发挥总量调控作用,也可通过对不同财政资金缴纳者的财政负担大小的调整,来发挥结构调整的作用。此外,财政收入分配也是调整国民收入初次分配格局,实现社会财富公平合理分配的主要工具。在我国,财政收入的主体是税收收入。因此,在税收体制及政策不变的情况下,财政收入会随着经济繁荣而增加,随着经济衰退而下降。我国的财政收入主
3、要包括税收、国有经济收入、债务收入以及其他收入四种形式,因此,财政收入会受到不同因素的影响。从国民经济部门结构看,财政收入又表现为来自各经济部门的收入。财政收入的部门构成就是在财政收入中,由来自国民经济各部门的收入所占的不同比例来表现财政收入来源的结构,它体现国民经济各部门与财政收入的关系。我国财政收入主要来自于工业、农业、商业、交通运输和服务业等部门。因此,本文认为财政收入主要受到总税收收入、国内生产总值、其他收入和就业人口总数的影响。二、预设模型令财政收入Y(亿元)为被解释变量,总税收收入X1(亿元)、国内生产总值X2(亿元)、其他收入X3(亿元)、就业人口总数为X4(万人)为解释变量,据
4、此建立回归模型。二、 数据收集从2010中国统计年鉴得到1990-2009年每年的财政收入、总税收收入、国内生产总值工、其他收入和就业人口总数的统计数据如下:obs财政收入Y总税收收入X1国内生产总值X2其他收入X3就业人口总数X419902937.12821.8618667.8299.536474919913149.482990.1721781.5240.16549119923483.373296.9126923.5265.156615219934348.954255.335333.9191.046680819945218.15126.8848197.9280.186745519956242
5、.26038.0460793.7396.196806519967407.996909.8271176.6724.666895019978651.148234.0478973682.36982019989875.959262.884402.3833.370637199911444.0810682.5889677.1925.4371394200013395.2312581.5199214.6944.9872085200116386.0415301.38109655.21218.173025200218903.6417636.45120332.71328.7473740200321715.25200
6、17.31135822.81691.9374432200426396.4724165.68159878.32148.3275200200531649.2928778.54184937.42707.8375825200638760.234804.35216314.43683.8576400200751321.7845621.97265810.34457.9676990200861330.3554223.79314045.45552.4677480200968518.359521.59340506.97215.7277995三、 模型建立1、 散点图分析2、 单因素或多变量间关系分析YX1X2X3
7、X4Y10.9989134611478530.9934790452908040.8770144886795640.983602719841508X10.99891346114785310.9937402677184690.8556377347447820.984935296593492X20.9934790452908040.99374026771846910.8561835802284710.986241165680459X30.8770144886795640.8556377347447820.85618358022847110.810940334650381X40.98360271984
8、15080.9849352965934920.9862411656804590.8109403346503811由散点图分析和变量间关系分析可以看出被解释变量财政收入Y与解释变量总税收收入X1、国内生产总值X2、其他收入X3、就业人口总数X4呈线性关系,因此该回归模型设为:3、 模型预模拟由eviews做ols回归得到结果:Dependent Variable: YMethod: Least SquaresDate: 11/14/11 Time: 17:51Sample: 1990 2009Included observations: 20VariableCoefficientStd. Err
9、ort-StatisticProb.C7299.5231691.8144.3146140.0006X11.0628020.02110850.349720.0000X20.0017700.0045280.3910070.7013X30.8733690.1198067.2898520.0000X4-0.1159750.026580-4.3631600.0006R-squared0.999978Mean dependent var20556.75Adjusted R-squared0.999972S.D. dependent var19987.03S.E. of regression106.6264
10、Akaike info criterion12.38886Sum squared resid170537.9Schwarz criterion12.63779Log likelihood-118.8886F-statistic166897.9Durbin-Watson stat1.496517Prob(F-statistic)0.000000 (4.314614) ( 50.34972 ) ( 0.391007) ( 7.289852) ( -4.363160) 四、 模型检验1.计量经济学意义检验多重共线性检验与解决求相关系数矩阵,得到:Correlation MatrixYX1X2X3X4
11、10.9989134611478530.9934790452908040.8770144886795640.9836027198415080.99891346114785310.9937402677184690.8556377347447820.9849352965934920.9934790452908040.99374026771846910.8561835802284710.9862411656804590.8770144886795640.8556377347447820.85618358022847110.8109403346503810.9836027198415080.98493
12、52965934920.9862411656804590.8109403346503811发现模型存在多重共线性。接下来运用逐步回归法对模型进行修正:将各个解释变量分别加入模型,进行一元回归: 作Y与X1的回归,结果如下:Dependent Variable: YMethod: Least SquaresDate: 11/22/11 Time: 23:02Sample: 1990 2009Included observations: 20VariableCoefficientStd. Errort-StatisticProb.C-755.6610145.2330-5.2030940.0001X
13、11.1449940.005760198.79310.0000R-squared0.999545Mean dependent var20556.75Adjusted R-squared0.999519S.D. dependent var19987.03S.E. of regression438.1521Akaike info criterion15.09765Sum squared resid3455590.Schwarz criterion15.19722Log likelihood-148.9765F-statistic39518.70Durbin-Watson stat0.475046P
14、rob(F-statistic)0.000000作Y与X2的回归,结果如下:Dependent Variable: YMethod: Least SquaresDate: 11/22/11 Time: 23:06Sample: 1990 2009Included observations: 20VariableCoefficientStd. Errort-StatisticProb.C-5222.077861.2067-6.0636740.0000X20.2076890.00554837.432670.0000R-squared0.987317Mean dependent var20556.7
15、5Adjusted R-squared0.986612S.D. dependent var19987.03S.E. of regression2312.610Akaike info criterion18.42478Sum squared resid96267005Schwarz criterion18.52435Log likelihood-182.2478F-statistic1401.205Durbin-Watson stat0.188013Prob(F-statistic)0.000000作Y与X3的回归,结果如下:Dependent Variable: YMethod: Least
16、SquaresDate: 11/22/11 Time: 23:08Sample: 1990 2009Included observations: 20VariableCoefficientStd. Errort-StatisticProb.C2607.879773.99883.3693580.0034X310.030730.29431134.082090.0000R-squared0.984740Mean dependent var20556.75Adjusted R-squared0.983893S.D. dependent var19987.03S.E. of regression2536
17、.645Akaike info criterion18.60971Sum squared resid1.16E+08Schwarz criterion18.70929Log likelihood-184.0971F-statistic1161.589Durbin-Watson stat1.194389Prob(F-statistic)0.000000作Y与X4的回归,结果如下:Dependent Variable: YMethod: Least SquaresDate: 11/22/11 Time: 23:08Sample: 1990 2009Included observations: 20
18、VariableCoefficientStd. Errort-StatisticProb.C-272959.337203.65-7.3368940.0000X44.0974030.5184677.9029180.0000R-squared0.776276Mean dependent var20556.75Adjusted R-squared0.763846S.D. dependent var19987.03S.E. of regression9712.824Akaike info criterion21.29492Sum squared resid1.70E+09Schwarz criteri
19、on21.39449Log likelihood-210.9492F-statistic62.45611Durbin-Watson stat0.157356Prob(F-statistic)0.000000依据可决系数最大的原则选取X1作为进入回归模型的第一个解释变量,再依次将其余变量分别代入回归得:作Y与X1、X2的回归,结果如下Dependent Variable: YMethod: Least SquaresDate: 11/22/11 Time: 23:09Sample: 1990 2009Included observations: 20VariableCoefficientStd.
20、 Errort-StatisticProb.C-188.4285239.0743-0.7881590.4415X11.2815940.04947225.905680.0000X2-0.0250550.009029-2.7749080.0130R-squared0.999687Mean dependent var20556.75Adjusted R-squared0.999650S.D. dependent var19987.03S.E. of regression374.0345Akaike info criterion14.82405Sum squared resid2378330.Schw
21、arz criterion14.97341Log likelihood-145.2405F-statistic27118.20Durbin-Watson stat0.683510Prob(F-statistic)0.000000作Y与X1、X3的回归,结果如下Dependent Variable: YMethod: Least SquaresDate: 11/22/11 Time: 23:10Sample: 1990 2009Included observations: 20VariableCoefficientStd. Errort-StatisticProb.C-351.105483.15
22、053-4.2225270.0006X10.9928130.01870753.071960.0000X31.3569360.1651098.2184100.0000R-squared0.999908Mean dependent var20556.75Adjusted R-squared0.999898S.D. dependent var19987.03S.E. of regression202.1735Akaike info criterion13.59361Sum squared resid694859.9Schwarz criterion13.74297Log likelihood-132
23、.9361F-statistic92839.33Durbin-Watson stat1.177765Prob(F-statistic)0.000000作Y与X1、X4的回归,结果如下Dependent Variable: YMethod: Least SquaresDate: 11/22/11 Time: 23:10Sample: 1990 2009Included observations: 20VariableCoefficientStd. Errort-StatisticProb.C11853.461824.5226.4967480.0000X11.1858860.006645178.4
24、6080.0000X4-0.1866450.026984-6.9170030.0000R-squared0.999881Mean dependent var20556.75Adjusted R-squared0.999867S.D. dependent var19987.03S.E. of regression230.8464Akaike info criterion13.85886Sum squared resid905931.0Schwarz criterion14.00822Log likelihood-135.5886F-statistic71206.90Durbin-Watson s
25、tat1.459938Prob(F-statistic)0.000000在满足经济意义和可决系数的条件下选取X3作为进入模型的第二个解释变量,再次进行回归则:作Y与X1、X3、X2的回归,结果如下Dependent Variable: YMethod: Least SquaresDate: 11/22/11 Time: 23:13Sample: 1990 2009Included observations: 20VariableCoefficientStd. Errort-StatisticProb.C-76.04458100.1724-0.7591370.4588X11.0859240.02
26、980136.438810.0000X31.2108530.1334449.0738770.0000X2-0.0140730.003944-3.5679010.0026R-squared0.999949Mean dependent var20556.75Adjusted R-squared0.999939S.D. dependent var19987.03S.E. of regression155.5183Akaike info criterion13.10826Sum squared resid386975.0Schwarz criterion13.30741Log likelihood-1
27、27.0826F-statistic104602.9Durbin-Watson stat1.196933Prob(F-statistic)0.000000作Y与X1、X3、X4的回归,结果如下Dependent Variable: YMethod: Least SquaresDate: 11/22/11 Time: 23:13Sample: 1990 2009Included observations: 20VariableCoefficientStd. Errort-StatisticProb.C6781.7641024.7456.6180030.0000X11.0686420.014514
28、73.627640.0000X30.8910690.1079498.2545510.0000X4-0.1076390.015451-6.9666750.0000R-squared0.999977Mean dependent var20556.75Adjusted R-squared0.999973S.D. dependent var19987.03S.E. of regression103.7654Akaike info criterion12.29900Sum squared resid172276.1Schwarz criterion12.49814Log likelihood-118.9
29、900F-statistic234970.9Durbin-Watson stat1.451447Prob(F-statistic)0.000000可见加入其余任何一个变量都会导致系数符号与经济意义不符,故最终修正后的回归模型为:Dependent Variable: YMethod: Least SquaresDate: 11/30/11 Time: 12:18Sample: 1990 2009Included observations: 20VariableCoefficientStd. Errort-StatisticProb.C-351.105483.15053-4.2225270.00
30、06X10.9928130.01870753.071960.0000X31.3569360.1651098.2184100.0000R-squared0.999908Mean dependent var20556.75Adjusted R-squared0.999898S.D. dependent var19987.03S.E. of regression202.1735Akaike info criterion13.59361Sum squared resid694859.9Schwarz criterion13.74297Log likelihood-132.9361F-statistic
31、92839.33Durbin-Watson stat1.177765Prob(F-statistic)0.000000(-4.222527) ( 53.07196) ( 8.218410) 异方差检验与修正 图示法ee与X1的散点图如下:说明ee与X1存在单调递增型异方差性。ee与X3的散点图如下:说明ee与X3存在单调递增型异方差性。G-Q检验对20组数据剔除掉中间四组剩下的进行分组后,第一组(1990-1997)数据的回归结果:Dependent Variable: YMethod: Least SquaresDate: 11/30/11 Time: 12:54Sample: 1990 1
32、997Included observations: 8VariableCoefficientStd. Errort-StatisticProb.X10.9841230.01625560.543200.0000X30.8515180.1566885.4344720.0029C-28.3427545.36993-0.6247030.5596R-squared0.999686Mean dependent var5179.791Adjusted R-squared0.999560S.D. dependent var2099.840S.E. of regression44.05899Akaike inf
33、o criterion10.68893Sum squared resid9705.972Schwarz criterion10.71872Log likelihood-39.75573F-statistic7947.575Durbin-Watson stat1.663630Prob(F-statistic)0.000000残差平方和RSS1=9705.972第二组(2002-2009)数据的回归结果:Dependent Variable: YMethod: Least SquaresDate: 11/30/11 Time: 12:55Sample: 2002 2009Included obse
34、rvations: 8VariableCoefficientStd. Errort-StatisticProb.X11.0664040.02774738.433210.0000X30.8472280.2151143.9385030.0110C-1184.159261.8258-4.5226980.0063R-squared0.999932Mean dependent var39824.41Adjusted R-squared0.999905S.D. dependent var18639.16S.E. of regression182.0047Akaike info criterion13.52
35、594Sum squared resid165628.5Schwarz criterion13.55573Log likelihood-51.10375F-statistic36705.08Durbin-Watson stat1.326122Prob(F-statistic)0.000000残差平方和RSS2= 165628.5所以F= RSS2/RSS1= 165628.5/9705.972=17.0646在给定a=5%下查得临界值 ,因此否定两组子样方差相同的假设,从而该总体随机项存在递增异方差性。White 方法检验White Heteroskedasticity Test:F-stat
36、istic6.142010Probability0.003919Obs*R-squared12.41812Probability0.014498Test Equation:Dependent Variable: RESID2Method: Least SquaresDate: 11/30/11 Time: 13:21Sample: 1990 2009Included observations: 20VariableCoefficientStd. Errort-StatisticProb.C24856.5019211.301.2938480.2153X1-20.573277.549127-2.7252520.0156X120.0002128.04E-052.6399820.0186X3237.181378.613233.0170670.0087X32-0.0240730.006568-3.6652300.0023R-squared0.620906Mean dependent var34743.00Adjusted R-squared0.519815S.D. dependent var49156.00S.E. of regression34062.86Akaike info criterion23.92212Sum squared r