《数据分析报告的范文.pdf》由会员分享,可在线阅读,更多相关《数据分析报告的范文.pdf(14页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、数据分析报告的范文数据分析报告的范文键入文字 键入文字 键入文字 关于某地区 361个人旅游情况统计分析报告-数据分析报告的范文精品篇一、数据介绍:本次分析的数据为某地区361 个人旅游情况状况统计表,其中共包含七变量,分别是:年龄,为三类变量;性别,为二类变量(0 代表女,1代表男);收入,为一类变量;旅游花费,为一类变量;通道,为二类变量(0 代表没走通道,1 代表走通道);旅游的积极性,为三类变量(0 代表积极性差,1 代表积极性一般,2 代表积极性比较好,3 代表积极性好 4 代表积极性非常好);额外收入,一类变量。通过运用spss 统计软件,对变量进行频数分析、描述性统计、方差分析、
2、相关分析,以了解该地区上述方面的综合状况,并分析个变量的分布特点及相互间的关系。二、数据分析1、频数分析。基本的统计分析往往从频数分析开始。通过频数分地区359 个人旅游基本状况的统计数据表,在性别、旅游的积极性不同的状况下的频数分析,从而了解该地区的男女职工数量、不同积极性情况的基本分布。统计量积极性性别N 有效359 359 缺失0 0 首先,对该地区的男女性别分布进行频数分析,结果如下性别频率百分比有效百分比累积百分比有效女198 55.2 55.2 55.2 男161 44.8 44.8 100.0 合计359 100.0 100.0 表说明,在该地区被调查的 359个人中,有 198
3、名女性,161名男性,男女比例分数据分析报告的范文数据分析报告的范文键入文字 键入文字 键入文字 别为44.8%和55.2%,该公司职工男女数量差距不大,女性略多于男性。其次对原有数据中的旅游的积极性进行频数分析,结果如下表:积极性频率百分比有效百分比累积百分比有效差171 47.6 47.6 47.6 一般79 22.0 22.0 69.6 比较好79 22.0 22.0 91.6 好24 6.7 6.7 98.3 非常好6 1.7 1.7 100.0 合计359 100.0 100.0 其次对原有数据中的积极性进行频数分析,结果如下表:其次对原有数据中的是否进通道进行频数分析,结果如下表:
4、数据分析报告的范文数据分析报告的范文键入文字 键入文字 键入文字 Statistics通道N Valid 359 Missing 0 通道Frequency Percent Valid Percent Cumulative Percent Valid 没走通道293 81.6 81.6 81.6 通道66 18.4 18.4 100.0 Total 359 100.0 100.0 这说明,在该地区被调查的 359个人中,有没走通道的占 81.6%,占绝大多数。上表及其直方图说明,被调查的 359个人中,对与旅游积极性差的组频数最高的,为171 人数的 47.6%,其次为积极性一般和比较好的,占
5、比例都为22.0%,积性为好的和非常好的比例比较低,分别为 24人和6人,占总体的比例为 6.7%和1.7%。2、描述统计分析。再通过简单的频数统计分析了解了职工在性别和受教育水平上的总体分布状况后,我们还需要对数据中的其他变量特征有更为精确的认识,这就需要通过计算基本描述统计的方法来实现。下面就对各个变量进行描述统计分析,得到它们的均值、标准差、片度峰度等数据,以进一步把我数据的集中趋势和离散趋势。描述统计量N 极小值极大值均值标准差方差偏度峰度统计量统计量统计量统计量统计量统计量统计量标准误统计量标准误收入359 7.426 6250.000 1032.93021 762.523942 5
6、81442.762 1.790.129 6.869.257 旅游花费359 21 1006 116.41 130.716 17086.704 3.145.129 13.401.257 有效的 N(列表状态)359 数据分析报告的范文数据分析报告的范文键入文字 键入文字 键入文字 如表所示,以起始工资为例读取分析结果,359个人中收入最小值为 7.426¥,最大值为 6250.00000¥,平均 1032.9302¥,标准差为 762.5239¥偏度系数和峰度系数分别为1.790和6.869。其他数据依此读取,则该表表明该地区旅游花费的详细分布状况。3、探索性数据分析(1)交叉分析。通过频数分析
7、能够掌握单个变量的数据分布情况,但是在实际分析中,不仅要了解单个变量的分布特征,还要分析多个变量不同取值下的分布,掌握多个变量的联合分布特征,进而分析变量之间的相互影响和关系。就本数据而言,需要了解现工资与性别、年龄、受教育水平、起始工资、本单位工作经历、以前工作经历、职务等级的交叉分析。现以现工资与职务等级的列联表分析为例,读取数据(下面数据分析表为截取的一部分):Count 性别*积极性交叉制表计数积极性合计差一般比较好好非常好性别女96 47 41 12 2 198 男75 32 38 12 4 161 合计171 79 79 24 6 359 数据分析报告的范文数据分析报告的范文键入文
8、字 键入文字 键入文字 上联表及 Bar Chart 涉及两个变量,即性别与积极性的二维交叉,反映了在不同的性别对于旅游积极性分布情况。上表中,性别成为行向量,积极性列向量。(2)性别与收入的探索性分析性别Case Processing Summary性别Cases Valid Missing Total N Percent N Percent N Percent 收入女198 100.0%0.0%198 100.0%男161 100.0%0.0%161 100.0%Descriptives性别Statistic Std.Error 收入女Mean 1005.28562 49.514796 9
9、5%Confidence Interval for Mean Lower Bound 907.63853 Upper Bound 1102.93272 数据分析报告的范文数据分析报告的范文键入文字 键入文字 键入文字 5%Trimmed Mean 957.92011 Median 937.50000 Variance 485439.577 Std.Deviation 696.734940 Minimum 7.426 Maximum 3125.000 Range 3117.574 Interquartile Range 937.563 Skewness.896.173 Kurtosis.310.
10、344 男Mean 1066.92791 65.993219 95%Confidence Interval for Mean Lower Bound 936.59779 Upper Bound 1197.25802 5%Trimmed Mean 986.95497 Median 937.50000 Variance 701171.907 Std.Deviation 837.360082 Minimum 58.630 Maximum 6250.000 Range 6191.370 Interquartile Range 718.750 Skewness 2.370.191 Kurtosis 10
11、.166.380 收入Stem-and-Leaf Plots 收入 Stem-and-Leaf Plot for 性别=女 Frequency Stem&Leaf 18.00 0.001111111111111111 26.00 0.22222222222223333333333333 17.00 0.44444444444555555 33.00 0.666666666666666666666777777777777 数据分析报告的范文数据分析报告的范文键入文字 键入文字 键入文字 22.00 0.8889999999999999999999 13.00 1.0000000001111 18
12、.00 1.222222222222222223 18.00 1.444455555555555555 4.00 1.7777 5.00 1.88888 14.00 2.00000111111111 .00 2.4.00 2.5555 1.00 2.6 2.00 2.88 3.00 Extremes (=3000)Stem width:1000.000 Each leaf:1 case(s)收入 Stem-and-Leaf Plot for 性别=男 Frequency Stem&Leaf 15.00 0.001111111111111 17.00 0.22222233333333333 13
13、.00 0.4444445555555 26.00 0.66666666666667777777777777 19.00 0.8888899999999999999 13.00 1.0000000000011 19.00 1.2222222222222222223 13.00 1.4444555555555 2.00 1.77 6.00 1.888889 6.00 2.000111 12.00 Extremes (=2351)Stem width:1000.000 Each leaf:1 case(s)数据分析报告的范文数据分析报告的范文键入文字 键入文字 键入文字 结果分析如下收入女男平均数
14、1005.28562 1066.92791均数的 95%可信区间(907.63853,1102.93272)(936.59779,1197.25802)5%的调整均数957.92011 986.95497 中位数937.50000 937.50000标准差696.734940 837.360082标准差485439.577701171.907最小值7.426 58.630最大值3125.000 6250.000极差3117.574 6191.370四分位数间距937.563 718.750偏度系数2.3702.370峰度系数.31010.166(3)p-p图分析数据分析报告的范文数据分析报告的
15、范文键入文字 键入文字 键入文字 Age结果分析年龄在正态 p-p 图的散点近似成一条直线,无趋势正态p-p 图的散点均匀分布在直线 y=0 的上下,故可认为本资料服从正态分布4、相关分析。相关分析是分析客观事物之间关系的数量分析法,明确客观事之间有怎样的关系对理解和运用相关分析是极其重要的。函数关系是指两事物之间的一种一一对应的关系,即当一个变量X 取一定值时,另一个变量函数Y 可以根据确定的函数取一定的值。另一种普遍存在的关系是统计关系。统计关系是指两事物之间的一种非一一对应的关系,即当一个变量 X取一定值时,另一个变量Y 无法根据确定的函数取一定的值。统计关系可分为线性关系和非线性关系。
16、事物之间的函数关系比较容易分析和测度,而事物之间的统计关系却不像函数据分析报告的范文数据分析报告的范文键入文字 键入文字 键入文字 数关系那样直接,但确实普遍存在,并且有的关系强有的关系弱,程度各有差异。如何测度事物之间的统计关系的强弱是人们关注的问题。相关分析正是一种简单易行的测度事物之间统计关系的有效工具。Correlations收入旅游花费额外收入收入Pearson Correlation 1.140*.853*Sig.(2-tailed).008.000 N 359 359 359 旅游花费Pearson Correlation.140*1.183*Sig.(2-tailed).008
17、.000 N 359 359 359 额外收入Pearson Correlation.853*.183*1 Sig.(2-tailed).000.000 N 359 359 359*.Correlation is significant at the 0.01 level(2-tailed).上表是对本次分析数据中,旅游花费、收入、额外收入的相关分析,表中相关系数旁边有两个星号(*)的,表示显著性水平为0.01 时,仍拒绝原假设。一个星号(*)表示显著性水平为0.05 是仍拒绝原假设。先以现旅游花费这一变量与其他变量的相关性为例分析,由上表可知,旅游花费与额外收入的相关性最大,5.回归分析有相
18、关性分析可得收入,旅游花费呈线性相关,因此作回归分析Variables Entered/RemovedbModel Variables Entered Variables Removed Method 1 收入a.Enter a.All requested variables entered.b.Dependent Variable:旅游花费Model Summaryb数据分析报告的范文数据分析报告的范文键入文字 键入文字 键入文字 Model R R Square Adjusted R Square Std.Error of the Estimate 1.140a.020.017 129.6
19、04 a.Predictors:(Constant),收入b.Dependent Variable:旅游花费ANOVAbModel Sum of Squares df Mean Square F Sig.1 Regression 120443.809 1 120443.809 7.170.008aResidual 5996596.239 357 16797.188 Total 6117040.048 358 a.Predictors:(Constant),收入b.Dependent Variable:旅游花费CoefficientsaModel Unstandardized Coefficie
20、nts Standardized Coefficients t Sig.B Std.Error Beta 1(Constant)91.563 11.528 7.943.000 收入.024.009.140 2.678.008 a.Dependent Variable:旅游花费Residuals StatisticsaMinimum Maximum Mean Std.Deviation N Predicted Value 91.74 241.90 116.41 18.342 359 Std.Predicted Value-1.345 6.842.000 1.000 359 Standard Er
21、ror of Predicted Value 6.840 47.362 9.048 3.426 359 Adjusted Predicted Value 92.09 271.79 116.53 19.018 359 Residual-193.904 891.785.000 129.423 359 Std.Residual-1.496 6.881.000.999 359 Stud.Residual-1.607 6.891.000 1.002 359 Deleted Residual-223.789 894.316-.117 130.229 359 Stud.Deleted Residual-1.
22、611 7.390.004 1.025 359 数据分析报告的范文数据分析报告的范文键入文字 键入文字 键入文字 Mahal.Distance.000 46.811.997 2.955 359 Cooks Distance.000.199.003.015 359 Centered Leverage Value.000.131.003.008 359 a.Dependent Variable:旅游花费Charts 由上图可知回归方程:y=91.563+0.024 (x1),(P(Sig=0.000)0.01)即旅游花费=91.563+0.024*收入(p0.05 旅游花费不成显著性差异,由图中可知旅行的旅游花费较高。学号:姓名:班级: