交流电气装置的过电压保护和绝缘配合.doc

上传人:知****量 文档编号:47826727 上传时间:2022-10-03 格式:DOC 页数:105 大小:1.05MB
返回 下载 相关 举报
交流电气装置的过电压保护和绝缘配合.doc_第1页
第1页 / 共105页
交流电气装置的过电压保护和绝缘配合.doc_第2页
第2页 / 共105页
点击查看更多>>
资源描述

《交流电气装置的过电压保护和绝缘配合.doc》由会员分享,可在线阅读,更多相关《交流电气装置的过电压保护和绝缘配合.doc(105页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、1/105中华人民国电力行业标准中华人民国电力行业标准交流电气装置的过电压保护和绝缘配合交流电气装置的过电压保护和绝缘配合OvervoltageprotectionandinsulationcoordinationforOvervoltageprotectionandinsulationcoordinationforACelectricalinstallationsACelectricalinstallationsDL/T620DL/T62019971997中华人民国电力工业部中华人民国电力工业部 1997-04-211997-04-21 批准批准 1997-10-011997-10-01 实

2、施实施前言前言本标准是根据原水利电力部 1979 年 1 月颁发的 SDJ779 电力设备过电压保护设计技术规程和 1984 年 3 月颁发的 SD11984500kV 电网过电压保护绝缘配合与电气设备接地暂行技术标准,经合并、修订之后提出的。本标准较修订前的两个标准有如下重要技术容的改变:1)增补了电力系统电阻接地方式,修订了不接地系统接地故障电流的阈值;2)对暂时过电压和操作过电压保护,补充了有效接地系统偶然失地保护和并联补偿电容器组、电动机操作过电压保护与隔离开关操作引起的特快暂态过电压保护等容,对 330kV 系统提出新的操作过电压水平要求,修订了限制 500kV 合闸和重合闸过电压的

3、原则和措施等;3)增加了金属氧化物避雷器参数选择的要求;4)增加了变电所金属氧化物避雷器最大保护距离和 SF6GIS 变电所的防雷保护方式的容;5)充实并完善了 3kV500kV 交流电气装置绝缘配合的原则和方法,给出架空线路、变电所2/105绝缘子串、空气间隙和电气设备绝缘水平的推荐值。本标准发布后,SDJ779 即行废止;SD11984 除第六章 500kV 电网电气设备接地外也予以废止。本标准的附录 A、附录 B 和附录 C 是标准的附录,附录 D、附录 E 和附录 F 是提示的附录。本标准由电力工业部科学技术司提出。本标准由电力工业部绝缘配合标准化技术委员会归口。本标准起草单位:电力工

4、业部电力科学研究院高压研究所。本标准起草人:杜澍春、维江。本标准委托电力工业部电力科学研究院高压研究所负责解释。1围本标准规定了标称电压为 3kV500kV 交流系统中电气装置过电压保护的方法和要求;提供了相对地、相间绝缘耐受电压或平均(50%)放电电压的选择程序,并给出了电气设备通常选用的耐受电压和架空送电线路与高压配电装置的绝缘子、空气间隙的推荐值。2定义本标准采用下列定义。2.1电阻接地系统 Resistancegroundedsystem系统中至少有一根导线或一点(通常是变压器或发电机的中性线或中性点)经过电阻接地。注3/1051高电阻接地的系统设计应符合R0XC0的准则,以限制由于电

5、弧接地故障产生的瞬态过电压。一般采用接地故障电流小于 10A。R0是系统等值零序电阻,XC0是系统每相的对地分布容抗。2低电阻接地的系统为获得快速选择性继电保护所需的足够电流,一般采用接地故障电流为 100A1000A。对于一般系统,限制瞬态过电压的准则是(R0X0)2。其中X0是系统等值零序感抗。2.2少雷区 lessthunderstormregion平均年雷暴日数不超过 15 的地区。2.3中雷区 middlethunderstormregion平均年雷暴日数超过 15 但不超过 40 的地区。2.4多雷区 morethunderstormregion平均年雷暴日数超过 40 但不超过

6、90 的地区。2.5雷电活动特殊强烈地区 Thunderstormactivityspecialstrongregion平均年雷暴日数超过 90 的地区与根据运行经验雷害特殊严重的地区。3系统接地方式和运行中出现的各种电压3.1系统接地方式3.1.1110kV500kV 系统应该采用有效接地方式,即系统在各种条件下应该使零序与正序电抗之比(X0/X1)为正值并且不大于 3,而其零序电阻与正序电抗之比(R0/X1)为正值并且不大于1。110kV 与 220kV 系统中变压器中性点直接或经低阻抗接地,部分变压器中性点也可不接地。330kV 与 500kV 系统中不允许变压器中性点不接地运行。4/1

7、053.1.23kV10kV 不直接连接发电机的系统和 35kV、66kV 系统,当单相接地故障电容电流不超过下列数值时,应采用不接地方式;当超过下列数值又需在接地故障条件下运行时,应采用消弧线圈接地方式:a)3kV10kV 钢筋混凝土或金属杆塔的架空线路构成的系统和所有 35kV、66kV 系统,10A。b)3kV10kV 非钢筋混凝土或非金属杆塔的架空线路构成的系统,当电压为:1)3kV 和 6kV 时,30A;2)10kV 时,20A。c)3kV10kV 电缆线路构成的系统,30A。3.1.33kV20kV 具有发电机的系统,发电机部发生单相接地故障不要求瞬时切机时,如单相接地故障电容电

8、流不大于表 1 所示允许值时,应采用不接地方式;大 DL/T6201997 于该允许值时,应采用消弧线圈接地方式,且故障点残余电流也不得大于该允许值。消弧线圈可装在厂用变压器中性点上,也可装在发电机中性点上。表 1发电机接地故障电流允许值发电机额定电压kV发电机额定容量MW电流允许值A发电机额定电压kV发电机额定容量MW电流允许值A6.350413.815.75125200210.550100318203001注:对额定电压为 13.8kV15.75kV 的氢冷发电机为 2.5A。发电机部发生单相接地故障要求瞬时切机时,宜采用高电阻接地方式。电阻器一般接在发电机中性点变压器的二次绕组上。5/1

9、053.1.46kV35kV 主要由电缆线路构成的送、配电系统,单相接地故障电容电流较大时,可采用低电阻接地方式,但应考虑供电可靠性要求、故障时瞬态电压、瞬态电流对电气设备的影响、对通信的影响和继电保护技术要求以与本地的运行经验等。3.1.56kV 和 10kV 配电系统以与发电厂厂用电系统,单相接地故障电容电流较小时,为防止谐振、间歇性电弧接地过电压等对设备的损害,可采用高电阻接地方式。3.1.6消弧线圈的应用a)消弧线圈接地系统,在正常运行情况下,中性点的长时间电压位移不应超过系统标称相电压的 15%。b)消弧线圈接地系统故障点的残余电流不宜超过 10A,必要时可将系统分区运行。消弧线圈宜

10、采用过补偿运行方式。c)消弧线圈的容量应根据系统 510 年的发展规划确定,并应按下式计算:335.1nCUIW(1)式中:W消弧线圈的容量,kVA;IC接地电容电流,A;Un系统标称电压,kV。d)系统中消弧线圈装设地点应符合下列要求:1)应保证系统在任何运行方式下,断开一、二回线路时,大部分不致失去补偿。2)不宜将多台消弧线圈集中安装在系统中的一处。3)消弧线圈宜接于 YN,d 或 YN,yn,d 接线的变压器中性点上,也可接在 ZN,yn 接线的变压器中性点上。接于 YN,d 接线的双绕组或 YN,yn,d 接线的三绕组变压器中性点上的消弧线圈容量,不应超过变压器三相总容量的 50%,并

11、不得大于三绕组变压器的任一绕组的容量。6/105如需将消弧线圈接于 YN,yn 接线的变压器中性点,消弧线圈的容量不应超过变压器三相总容量的 20%,但不应将消弧圈接于零序磁通经铁芯闭路的 YN,yn 接线的变压器,如外铁型变压器或三台单相变压器组成的变压器组。4)如变压器无中性点或中性点未引出,应装设专用接地变压器,其容量应与消弧线圈的容量相配合。3.2系统运行中出现于设备绝缘上的电压3.2.1系统运行中出现于设备绝缘上的电压有:a)正常运行时的工频电压;b)暂时过电压(工频过电压、谐振过电压);c)操作过电压;d)雷电过电压。3.2.2相对地暂时过电压和操作过电压的标么值如下:a)工频过电

12、压的3/p.u.0.1mU;b)谐振过电压和操作过电压的3/2p.u.0.1mU。注:Um为系统最高电压。3.2.3系统最高电压的围:a)围,3.6kVUm252kV;b)围,Um=252kV。4暂时过电压、操作过电压与保护4.1暂时过电压(工频过电压、谐振过电压)与保护4.1.1工频过电压、谐振过电压与系统结构、容量、参数、运行方式以与各种安全自动装置7/105的特性有关。工频过电压、谐振过电压除增大绝缘承受电压外,还对选择过电压保护装置有重要影响。a)系统中的工频过电压一般由线路空载、接地故障和甩负荷等引起。对围的工频过电压,在设计时应结合实际条件加以预测。根据这类系统的特点,有时需综合考

13、虑这几种因素的影响。通常可取正常送电状态下甩负荷和在线路受端有单相接地故障情况下甩负荷作为确定系统工频过电压的条件。对工频过电压应采取措施加以降低。一般主要采用在线路上安装并联电抗器的措施限制工频过电压。在线路上架设良导体避雷线降低工频过电压时,宜通过技术经济比较加以确定。系统的工频过电压水平一般不宜超过下列数值:线路断路器的变电所侧1.3p.u.线路断路器的线路侧1.4p.u.b)对围中的 110kV 与 220kV 系统,工频过电压一般不超过 1.3p.u.;3kV10kV 和 35kV66kV 系统,一般分别不超过p.u.31.1和p.u.3。应避免在 110kV 与 220kV 有效接

14、地系统中偶然形成局部不接地系统,并产生较高的工频过电压。对可能形成这种局部系统、低压侧有电源的 110kV 与 220kV 变压器不接地的中性点应装设间隙。因接地故障形成局部不接地系统时该间隙应动作;系统以有效接地方式运行发生单相接地故障时间隙不应动作。间隙距离的选择除应满足这两项要求外,还应兼顾雷电过电压下保护变压器中性点标准分级绝缘的要求(参见 7.3.5)。4.1.2谐振过电压包括线性谐振和非线性(铁磁)谐振过电压,一般因操作或故障引起系统元件参数出现不利组合而产生。应采取防止措施,避免出现谐振过电压的条件;或用保护装置限制其幅值和持续时间。8/105a)为防止发电机电感参数周期性变化引

15、起的发电机自励磁(参数谐振)过电压,一般可采取下列防止措施:1)使发电机的容量大于被投入空载线路的充电功率;2)避免发电机带空载线路启动或避免以全电压向空载线路合闸;3)快速励磁自动调节器可限制发电机同步自励过电压。发电机异步自励过电压,仅能用速动过电压继电保护切机以限制其作用时间。b)应该采用转子上装设阻尼绕组的水轮发电机,以限制水轮发电机不对称短路或负荷严重不平衡时产生的谐振过电压。4.1.3围的系统当空载线路上接有并联电抗器,且其零序电抗小于线路零序容抗时,如发生非全相运行状态(分相操动的断路器故障或采用单相重合闸时),由于线间电容的影响,断开相上可能发生谐振过电压。上述条件下由于并联电

16、抗器铁芯的磁饱和特性,有时在断路器操作产生的过渡过程激发下,可能发生以工频基波为主的铁磁谐振过电压。在并联电抗器的中性点与之间串接一接地电抗器,一般可有效地防止这种过电压。该接地电抗器的电抗值宜按补偿并联电抗器所接线路的相间电容选择,同时应考虑以下因素:a)并联电抗器、接地电抗器的电抗与线路容抗的实际值与设计值的变异围;b)限制潜供电流的要求;c)连接接地电抗器的并联电抗器中性点绝缘水平。4.1.4围的系统中,当空载线路(或其上接有空载变压器时)由电源变压器断路器合闸、重合闸或由只带有空载线路的变压器低压侧合闸、带电线路末端的空载变压器合闸以与系统解列等情况下,如由这些操作引起的过渡过程的激发

17、使变压器铁芯磁饱和、电感作周期性变化,回路等值电感在 2 倍工频下的电抗与 2 倍工频下线路入口容抗接近相等时,可能产生以 29/105次谐波为主的高次谐波谐振过电压。应尽量避免产生 2 次谐波谐振的运行方式、操作方式以与防止在故障时出现该种谐振的接线;确实无法避免时,可在变电所线路继电保护装置增设过电压速断保护,以缩短该过电压的持续时间。4.1.5围的系统中有可能出现下列谐振过电压:a)110kV 与 220kV 系统采用带有均压电容的断路器开断连接有电磁式电压互感器的空载母线,经验算有可能产生铁磁谐振过电压时,宜选用电容式电压互感器。已装有电磁式电压互感器时,运行中应避免可能引起谐振的操作

18、方式,必要时可装设专门消除此类铁磁谐振的装置。b)由单一电源侧用断路器操作中性点不接地的变压器出现非全相或熔断器非全相熔断时,如变压器的励磁电感与对地电容产生铁磁谐振,能产生 2.0p.u3.0p.u.的过电压;有双侧电源的变压器在非全相分合闸时,由于两侧电源的不同步在变压器中性点上可出现接近于 2.0p.u.的过电压,如产生铁磁谐振,则会出现更高的过电压。c)经验算如断路器操作中因操动机构故障出现非全相或严重不同期时产生的铁磁谐振过电压可能危与中性点为标准分级绝缘、运行时中性点不接地的 110kV 与 220kV 变压器的中性点绝缘,宜在中性点装设间隙,对该间隙的要求与 4.1.1b)同。在

19、操作过程中,应先将变压器中性点临时接地。有单侧电源的变压器,如另一侧带有同期调相机或较大的同步电动机,也类似有双侧电源的情况。d)3kV66kV 不接地系统或消弧线圈接地系统偶然脱离消弧线圈的部分,当连接有中性点接地的电磁式电压互感器的空载母线(其上带或不带空载短线路),因合闸充电或在运行时接地故障消除等原因的激发,使电压互感器过饱和则可能产生铁磁谐振过电压。为限制这类过10/105电压,可选取下列措施:1)选用励磁特性饱和点较高的电磁式电压互感器。2)减少同一系统中电压互感器中性点接地的数量,除电源侧电压互感器高压绕组中性点接地外,其它电压互感器中性点尽可能不接地。3)个别情况下,在 10k

20、V 与以下的母线上装设中性点接地的星形接线电容器组或用一段电缆代替架空线路以减少XC0,使XC00.01Xm。注:Xm为电压互感器在线电压作用下单相绕组的励磁电抗。4)在互感器的开口三角形绕组装设)/(4.0213mKXR)的电阻(K13为互感器一次绕组与开口三角形绕组的变比)或装设其它专门消除此类铁磁谐振的装置。5)10kV 与以下互感器高压绕组中性点经Rpn0.06Xm(容量大于 600W)的电阻接地。4.1.63kV66kV 不接地与消弧线圈接地系统,应采用性能良好的设备并提高运行维护水平,以避免在下述条件下产生铁磁谐振过电压:a)配电变压器高压绕组对地短路;b)送电线路一相断线且一端接

21、地或不接地。4.1.7有消弧线圈的较低电压系统,应适当选择消弧线圈的脱谐度,以便避开谐振点;无消弧线圈的较低电压系统,应采取增大其对地电容等措施(如安装电力电容器等),以防止零序电压通过电容,如变压器绕组间或两条架空线路间的电容耦合,由较高电压系统传递到中性点不接地的较低电压系统,或由较低电压系统传递到较高电压系统,或回路参数形成串联谐振条件,产生高幅值的转移过电压。4.2操作过电压与保护4.2.1线路合闸和重合闸过电压。空载线路合闸时,由于线路电感电容的振荡将产生合闸过电压。线路重合时,由于11/105电源电势较高以与线路上残余电荷的存在,加剧了这一电磁振荡过程,使过电压进一步提高。a)围中

22、,线路合闸和重合闸过电压对系统中设备绝缘配合有重要影响,应该结合系统条件预测空载线路合闸、单相重合闸和成功、非成功的三相重合闸(如运行中使用时)的相对地和相间过电压。预测这类操作过电压的条件如下:1)对于发电机变压器线路单元接线的空载线路合闸,线路合闸后,电源母线电压为系统最高电压;对于变电所出线则为相应运行方式下的实际母线电压。2)成功的三相重合闸前,线路受端曾发生单相接地故障;非成功的三相重合闸时,线路受端有单相接地故障。b)空载线路合闸、单相重合闸和成功的三相重合闸(如运行中使用时),在线路上产生的相对地统计过电压,对 330kV 和 500kV 系统分别不宜大于 2.2p.u.和 2.

23、0p.u.。c)限制这类过电压的最有效措施是在断路器上安装合闸电阻。对围,当系统的工频过电压符合 4.1.1 要求且符合以下参考条件时,可仅用安装于线路两端(线路断路器的线路侧)上的金属氧化物避雷器(MOA)将这类操作引起的线路的相对地统计过电压限制到要求值以下。这些参考条件是:1)发电机变压器线路单元接线时的参考条件见表 2。表 2仅用 MOA 限制合闸、重合闸过电压的条件系统标称电压kV发电机容量MW线路长度km系统标称电压kV发电机容量MW线路长度km33020030010020050020030010015012/1055002002)系统中变电所出线时的参考条件为:330kV200k

24、m500kV200km在其他条件下,可否仅用金属氧化物避雷器限制合闸和重合闸过电压,需经校验确定。d)围的线路合闸和重合闸过电压一般不超过 3.0p.u.,通常无需采取限制措施。4.2.2空载线路分闸过电压。空载线路开断时,如断路器发生重击穿,将产生操作过电压。a)对围的线路断路器,应要求在电源对地电压为 1.3p.u.条件下开断空载线路不发生重击穿。b)对围,110kV 与 220kV 开断架空线路该过电压不超过 3.0p.u.;开断电缆线路可能超过3.0p.u.。为此,开断空载架空线路宜采用不重击穿的断路器;开断电缆线路应该采用不重击穿的断路器。c)对围,66kV 与以下系统中,开断空载线

25、路断路器发生重击穿时的过电压一般不超过3.5p.u.。开断前系统已有单相接地故障,使用一般断路器操作时产生的过电压可能超过4.0p.u.。为此,选用操作断路器时,应该使其开断空载线路过电压不超过 4.0p.u.。4.2.3线路非对称故障分闸和振荡解列过电压。系统送受端联系薄弱,如线路非对称故障导致分闸,或在系统振荡状态下解列,将产生线路非对称故障分闸或振荡解列过电压。对围的线路,宜对这类过电压进行预测。预测前一过电压的条件,可选线路受端存在13/105单相接地故障,分闸时线路送受端电势功角差应按实际情况选取。当过电压超过 4.2.1b)所列数值时,可用安装在线路两端的金属氧化物避雷器加以限制。

26、4.2.4隔离开关操作空载母线的过电压。隔离开关操作空载母线时,由于重击穿将会产生幅值可能超过 2.0p.u.、频率为数百千赫至兆赫的高频振荡过电压。这对围的电气装置有一定危险。为此,宜符合以下要求:a)隔离开关操作由敞开式配电装置构成的变电所空载母线时的过电压,可能使电流互感器一次绕组进出线之间的套管闪络放电,宜采用金属氧化物避雷器对其加以保护。b)隔离开关操作气体绝缘全封闭组合电器(GIS)变电所的空载母线时,会产生频率更高的过电压,它可能对匝间绝缘裕度不高的变压器构成危胁。为此,宜对采用的操作方式加以校核,尽量避免可能引起危险的操作方式。4.2.53kV66kV 系统开断并联电容补偿装置

27、如断路器发生单相重击穿时,电容器高压端对地过电压可能超过 4.0p.u.。开断前电源侧有单相接地故障时,该过电压将更高。开断时如发生两相重击穿,电容器极间过电压可能超过n.C25.2U。图 1并联电容补偿装置的避雷器保护接线(a)单相重击穿过电压的保护接线;(b)单、两相重击穿过电压的保护接线操作并联电容补偿装置,应采用开断时不重击穿的断路器。对于需频繁投切的补偿装置,宜按图 1(a)装设并联电容补偿装置金属氧化物避雷器(F1 或 F2),作为限制单相重击穿过电压14/105的后备保护装置。在电源侧有单相接地故障不要求进行补偿装置开断操作的条件下,宜采用F1。断路器操作频繁且开断时可能发生重击

28、穿或者合闸过程中触头有弹跳现象时,宜按图4.1(b)装设并联电容补偿装置金属氧化物避雷器(F1 与 F3 或 F4)。F3 或 F4 用以限制两相重击穿时在电容器极间出现的过电压。当并联电容补偿装置电抗器的电抗率不低于 12%时,宜采用 F4。注:Un.C为电容器的额定电压。4.2.6操作空载变压器和并联电抗器等的过电压。a)开断空载变压器由于断路器强制熄弧(截流)产生的过电压,与断路器型式、变压器铁芯材料、绕组型式、回路元件参数和系统接地方式等有关。当开断具有冷轧硅钢片的变压器时,过电压一般不超过 2.0p.u.,可不采取保护措施。开断具有热轧硅钢片铁芯的 110kV 与 220kV 变压器

29、的过电压一般不超过 3.0p.u.;66kV与以下变压器一般不超过 4.0p.u.。采用熄弧性能较强的断路器开断激磁电流较大的变压器以与并联电抗补偿装置产生的高幅值过电压,可在断路器的非电源侧装设阀式避雷器加以限制。保护变压器的避雷器可装在其高压侧或低压侧。但高低压侧系统接地方式不同时,低压侧宜装设操作过电压保护水平较低的避雷器。b)在可能只带一条线路运行的变压器中性点消弧线圈上,宜用阀式避雷器限制切除最后一条线路两相接地故障时,强制开断消弧线圈电流在其上产生的过电压。c)空载变压器和并联电抗补偿装置合闸产生的操作过电压一般不超过 2.0p.u.,可不采取保护措施。4.2.7在开断高压感应电动

30、机时,因断路器的截流、三一样时开断和高频重复重击穿等会产生过电压(后两种仅出现于真空断路器开断时)。过电压幅值与断路器熄弧性能、电动机和15/105回路元件参数等有关。开断空载电动机的过电压一般不超过 2.5p.u.。开断起动过程中的电动机时,截流过电压和三一样时开断过电压可能超过 4.0p.u.,高频重复重击穿过电压可能超过 5.0p.u.。采用真空断路器或采用的少油断路器截流值较高时,宜在断路器与电动机之间装设旋转电机金属氧化物避雷器或 R-C 阻容吸收装置。高压感应电动机合闸的操作过电压一般不超过 2.0p.u.,可不采取保护措施。4.2.866kV 与以下系统发生单相间歇性电弧接地故障

31、时,可产生过电压,过电压的高低随接地方式不同而异。一般情况下最大过电压不超过下列数值:不接地系统3.5p.u.消弧线圈接地系统3.2p.u.电阻接地系统2.5p.u.具有限流电抗器、电动机负荷,且设备参数配合不利的 3kV10kV 某些不接地系统,发生单相间歇性电弧接地故障时,可能产生危与设备相间或相对地绝缘的过电压。对这种系统根据负荷性质和工程的重要程度,可进行必要的过电压预测,以确定保护方案。4.2.9采用无间隙金属氧化物避雷器限制各类操作过电压时,其持续运行电压和额定电压不应低于表 3 所列数值。避雷器应能承受操作过电压作用的能量。4.2.10为监测围系统运行中出现的工频过电压、谐振过电

32、压和操作过电压,宜在变电所安装过电压波形或幅值的自动记录装置,并妥为收集实测结果。5雷电过电压和保护装置5.1雷电过电压5.1.1设计和运行中应考虑直接雷击、雷电反击和感应雷电过电压对电气装置的危害。5.1.2架空线路上的雷电过电压。16/105a)距架空线路S65m 处,雷云对地放电时,线路上产生的感应过电压最大值可按下式计算:sc25IhiU(2)式中:Ui雷击时感应过电压最大值,kV;I雷电流幅值(一般不超过 100),kA;hc导线平均高度,m;s雷击点与线路的距离,m。线路上的感应过电压为随机变量,其最大值可达 300kV400kV,一般仅对 35kV 与以下线路的绝缘有一定威胁。b

33、)雷击架空线路导线产生的直击雷过电压,可按下式确定:US100I(3)式中:US雷击点过电压最大值,kV。雷直击导线形成的过电压易导致线路绝缘闪络。架设避雷线可有效地减少雷直击导线的概率。c)因雷击架空线路避雷线、杆顶形成作用于线路绝缘的雷电反击过电压,与雷电参数、杆塔型式、高度和接地电阻等有关。宜适当选取杆塔接地电阻,以减少雷电反击过电压的危害。5.1.3发电厂和变压所的雷电过电压来自雷电对配电装置的直接雷击、反击和架空进线上出现的雷电侵入波。a)应该采用避雷针或避雷线对高压配电装置进行直击雷保护并采取措施防止反击。b)应该采取措施防止或减少发电厂和变电所近区线路的雷击闪络并在厂、所适当配置

34、阀式避雷器以减少雷电侵入波过电压的危害。c)按本标准要求对采用的雷电侵入波过电压保护方案校验时,校验条件为保护接线一般应该17/105保证 2km 外线路导线上出现雷电侵入波过电压时,不引起发电厂和变电所电气设备绝缘损坏。5.2避雷针和避雷线5.2.1单支避雷针的保护围(图 2):a)避雷针在地面上的保护半径,应按下式计算:r1.5hP(4)式中:r保护半径,m;h避雷针的高度,m;P高度影响系数,h30m,P1;30mh120m,hP5.5;当h120m 时,取其等于 120m。b)在被保护物高度hx水平面上的保护半径应按下列方法确定:1)当hx0.5h时rx(h-hx)PhaP(5)式中:

35、rx避雷针在hx水平面上的保护半径,m;hx被保护物的高度,m;ha避雷针的有效高度,m。2)当hx0.5h时rx(1.5h-2hx)P(6)18/105图 2单支避雷针的保护围(h30m 时,45)图 3高度为h的两等高避雷针的保护围19/105图 4两等高(h)避雷针间保护围的一侧最小宽度(bx)与D/haP的关系(a)D/hai07;(b)D/haP575.2.2两支等高避雷针的保护围(图 3):a)两针外侧的保护围应按单支避雷针的计算方法确定。b)两针间的保护围应按通过两针顶点与保护围上部边缘最低点 O 的圆弧确定,圆弧的半径为RO。O 点为假想避雷针的顶点,其高度应按下式计算:PDh

36、h70(7)式中:hO两针间保护围上部边缘最低点高度,m;D两避雷针间的距离,m。两针间hx水平面上保护围的一侧最小宽度应按图 4 确定。当bxrx时,取bxrx。求得bx后,可按图 3 绘出两针间的保护围。两针间距离与针高之比D/h不宜大于 5。5.2.3多支等高避雷针的保护围(图 5):图 5三、四支等高避雷针在hx水平面上的保护围(a)三支等高避雷针在hx水平面上的保护围;(b)四支等高避雷针在hx水平面上的保护围20/105a)三支等高避雷针所形成的三角形的外侧保护围应分别按两支等高避雷针的计算方法确定。如在三角形被保护物最大高度hx水平面上,各相邻避雷针间保护围的一侧最小宽度bx0时

37、,则全部面积受到保护。图 6单根避雷线的保护围(h30m 时,25)b)四支与以上等高避雷针所形成的四角形或多角形,可先将其分成两个或数个三角形,然后分别按三支等高避雷针的方法计算。如各边的保护围一侧最小宽度bx0,则全部面积即受到保护。5.2.4单根避雷线在hx水平面上每侧保护围的宽度(图 6):a)当2xhh 时rx0.47(h-hx)P(8)式中:rx每侧保护围的宽度,m。b)当2xhh 时21/105rx(h-1.53hx)P(9)5.2.5两根等高平行避雷线的保护围(图 7):a)两避雷线外侧的保护围应按单根避雷线的计算方法确定。b)两避雷线间各横截面的保护围应由通过两避雷线 1、2

38、 点与保护围边缘最低点 O 的圆弧确定。O 点的高度应按下式计算:PDhh4O(10)图 7两根平行避雷线的保护围式中:hO两避雷线间保护围上部边缘最低点的高度,m;D两避雷线间的距离,m;h避雷线的高度,m。c)两避雷线端部的两侧保护围仍按单根避雷线保护围计算。两线间保护最小宽度(参见图 3)按下列方法确定:1)当2xhh 时bx0.47(hO-hx)P(11)2)当2xhh 时22/105bx(hO1.53hx)P(12)5.2.6不等高避雷针、避雷线的保护围(图 8):图 8两支不等高避雷针的保护围a)两支不等高避雷针外侧的保护围应分别按单支避雷针的计算方法确定。b)两支不等高避雷针间的

39、保护围应按单支避雷针的计算方法,先确定较高避雷针1的保护围,然后由较低避雷针 2 的顶点,作水平线与避雷针 1 的保护围相交于点 3,取点 3 为等效避雷针的顶点,再按两支等高避雷针的计算方法确定避雷针 2 和 3 间的保护围。通过避雷针 2、3 顶点与保护围上部边缘最低点的圆弧,其弓高应按下式计算:PDf7(13)式中:f圆弧的弓高,m;D避雷针 2 和等效避雷针 3 间的距离,m。c)对多支不等高避雷针所形成的多角形,各相邻两避雷针的外侧保护围按两支不等高避雷针的计算方法确定;三支不等高避雷针,如在三角形被保护物最大高度hx水平面上,各相邻避雷针间保护围一侧最小宽度bx0,则全部面积即受到

40、保护;四支与以上不等高避雷针所形成的多角形,其侧保护围可仿照等高避雷针的方法确定。d)两根不等高避雷线各横截面的保护围,应仿照两支不等高避雷针的方法,按式(10)计算。5.2.7山地和坡地上的避雷针,由于地形、地质、气象与雷电活动的复杂性,避雷针的保护围应有所减小。避雷针的保护围可按式(4)式(6)的计算结果和依图 4 确定的bx等乘以系23/105数 0.75 求得;式(7)可修改为PDhh5O;式(13)可修改为PDf5。利用山势设立的远离被保护物的避雷针不得作为主要保护装置。5.2.8相互靠近的避雷针和避雷线的联合保护围可近似按下列方法确定(图 9):避雷针、线外侧保护围分别按单针、线的

41、保护围确定。侧首先将不等高针、线划为等高针、线,然后将等高针、线视为等高避雷线计算其保护围。图 9避雷针和避雷线的联合保护围5.3阀式避雷器5.3.1采用阀式避雷器进行雷电过电压保护时,除旋转电机外,对不同电压围、不同系统接地方式的避雷器选型如下:a)有效接地系统,围应该选用金属氧化物避雷器;围宜采用金属氧化物避雷器。b)气体绝缘全封闭组合电器(GIS)和低电阻接地系统应该选用金属氧化物避雷器。c)不接地、消弧线圈接地和高电阻接地系统,根据系统中谐振过电压和间歇性电弧接地过电压等发生的可能性与其严重程度,可任选金属氧化物避雷器或碳化硅普通阀式避雷器。5.3.2旋转电机的雷电侵入波过电压保护,宜

42、采用旋转电机金属氧化物避雷器或旋转电机磁吹阀式避雷器。5.3.3有串联间隙金属氧化物避雷器和碳化硅阀式避雷器的额定电压,在一般情况下应符合下列要求:a)110kV 与 220kV 有效接地系统不低于 0.8Um。24/105b)3kV10kV 和 35kV、66kV 系统分别不低于 1.1Um和Um;3kV 与以上具有发电机的系统不低于 1.1Umg。注:Umg为发电机最高运行电压。c)中性点避雷器的额定电压,对 3kV20kV 和 35kV、66kV 系统,分别不低于 0.64Um和0.58Um;对 3kV20kV 发电机,不低于 0.64Umg。5.3.4采用无间隙金属氧化物避雷器作为雷电

43、过电压保护装置时,应符合下列要求:a)避雷器的持续运行电压和额定电压应不低于表 3 所列数值。b)避雷器能承受所在系统作用的暂时过电压和操作过电压能量。5.3.5阀式避雷器标称放电电流下的残压,不应大于被保护电气设备(旋转电机除外)标准雷电冲击全波耐受电压的 71%。5.3.6发电厂和变电所 35kV 与以上避雷器应装设简单可靠的多次动作记录器或磁钢记录器。5.4排气式避雷器5.4.1在选择排气式避雷器时,开断续流的上限,考虑非周期分量,不得小于安装处短路电流的最大有效值;开断续流的下限,不考虑非周期分量,不得大于安装处短路电流的可能最小值。5.4.2如按开断续流的围选择排气式避雷器,最大短路

44、电流应按雷季电力系统最大运行方式计算,并包括非周期分量的第一个半周短路电流有效值。如计算困难,对发电厂附近,可将周期分量第一个半周的有效值乘以 1.5;距发电厂较远的地点,乘以 1.3。最小短路电流应按雷季电力系统最小运行方式计算,且不包括非周期分量。5.4.3排气式避雷器外间隙的距离,在符合保护要求的条件下,应采用较大的数值。排气式避雷器外间隙的距离一般采用表 4 所列数值。25/105表 3无间隙金属氧化物避雷器持续运行电压和额定电压系统接地方式持续运行电压kV额定电压kV相地中性点相地中性点有效接地110kV3/mU0.45Um0.75Um0.57Um220kV3/mU0.13Um(0.

45、45Um)0.75Um0.17Um(0.57Um)330kV、500kV)59.0(3mmUU0.13Um0.75Um(0.8Um)0.17Um不接地3kV20kV1.1Um;Umg3/;64.0gmmUU1.38Um;1.25Umg0.8Um;0.72Umg35kV、66kVUm3/mU1.25Um0.72Um消弧线圈Um;Umg3/mU;3/gmU1.25Um;1.25Umg0.72Um;0.72Umg低电阻0.8UmUm高电阻1.1Um;Umg3/1.1mU;3/gmU1.38Um;1.25Umg0.8Um;0.72Umg注1220kV 括号外、数据分别对应变压器中性点经接地电抗器接地和

46、不接地。2330kV、500kV 括号外、数据分别与工频过电压 1.3p.u.和 1.4p.u.对应。3220kV 变压器中性点经接地电抗器接地和 330kV、500kV 变压器或高压并联电抗器中性点经接地电抗器接地时,接地电抗器的电抗与变压器或高压并联电抗器的零序电抗之比小于等26/105于 1/3。4110kV、220kV 变压器中性点不接地且绝缘水平低于表 21 所列数值时,避雷器的参数需另行研究确定。表 4排气式避雷器外间隙的距离系统标称电压kV36102035最小距离mm8101560100最大距离mm150200250300为减少排气式避雷器在反击时动作,应降低与避雷线的总接地电阻

47、,并增大外间隙距离,一般可增大到表 4 所列的外间隙最大距离。5.4.4排气式避雷器的设置应符合下列要求:a)应避免各避雷器排出的电离气体相交而造成短路。但在开口端固定避雷器,则允许其排出的电离气体相交。b)为防止在排气式避雷器的腔积水,宜垂直安装,开口端向下或倾斜安装,与水平线的夹角不应小于 15。在污秽地区,应增大倾斜角度。c)排气式避雷器应安装牢固,并保证外间隙稳定不变。d)标称电压 10kV 与以下系统中用的排气式避雷器,为防止雨水造成短路,外间隙的电极不应垂直布置。27/105e)外间隙电极宜镀锌,或采取避免锈水沾污绝缘子的措施。5.4.5排气式避雷器应装设简单可靠的动作指示器。5.

48、5保护间隙5.5.1如排气式避雷器的灭弧能力不能符合要求,可采用保护间隙,并应尽量与自动重合闸装置配合,以减少线路停电事故。保护间隙的主间隙距离不应小于表 5 所列数值。5.5.2除有效接地系统和低电阻接地系统外,应使单相间隙动作时有利于灭弧,并宜采用角形保护间隙。保护间隙宜在其接地引下线中串接一个辅助间隙,以防止外物使间隙短路。辅助间隙的距离可采用表 6 所列数值。表 5保护间隙的主间隙距离最小值系统标称电压kV36102035间隙距离mm81525100210表 6辅助间隙的距离系统标称电压kV36、102035辅助间隙距离mm510152028/1056高压架空线路的雷电过电压保护6.1

49、一般线路的保护6.1.1送电线路的雷电过电压保护方式,应根据线路的电压等级、负荷性质、系统运行方式、当地原有线路的运行经验、雷电活动的强弱、地形地貌的特点和土壤电阻率的高低等条件,通过技术经济比较确定。各级电压的送、配电线路,应尽量装设自动重合闸装置。35kV 与以下的厂区的短线路,可按需要确定。6.1.2各级电压的线路,一般采用下列保护方式:a)330kV 和 500kV 线路应沿全线架设双避雷线,但少雷区除外。b)220kV 线路宜沿全线架设双避雷线;少雷区宜架设单避雷线。c)110kV 线路一般沿全线架设避雷线,在山区和雷电活动特殊强烈地区,宜架设双避雷线。在少雷区可不沿全线架设避雷线,

50、但应装设自动重合闸装置。d)66kV 线路,负荷重要且所经地区平均年雷暴日数为 30 以上的地区,宜沿全线架设避雷线。e)35kV 与以下线路,一般不沿全线架设避雷线。f)除少雷区外,3kV10kV 钢筋混凝土杆配电线路,宜采用瓷或其他绝缘材料的横担;如果用铁横担,对供电可靠性要求高的线路宜采用高一电压等级的绝缘子,并应尽量以较短的时间切除故障,以减少雷击跳闸和断线事故。6.1.3有避雷线的线路,在一般土壤电阻率地区,其耐雷水平不宜低于表 7 所列数值。6.1.4有避雷线的线路,每基杆塔不连避雷线的工频接地电阻,在雷季干燥时,不宜超过表8 所列数值。表 7有避雷线线路的耐雷水平标称电压3566

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 工作计划

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁