《第2章数据通信原理精选文档.ppt》由会员分享,可在线阅读,更多相关《第2章数据通信原理精选文档.ppt(76页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、第2章数据通信原理1本讲稿第一页,共七十六页数据通信原理第第2章章 随机过程分析随机过程分析2本讲稿第二页,共七十六页l为什么要进行随机过程分析?为什么要进行随机过程分析?l1,通信中的信号通常具有某种随机性,即,通信中的信号通常具有某种随机性,即随机信号。如语音信号、图像信号、视频随机信号。如语音信号、图像信号、视频信号等。信号等。l2,通信中的噪声是不能预测的,称为随机,通信中的噪声是不能预测的,称为随机噪声。噪声。l故要对通信中的信号和噪声进行分析,必故要对通信中的信号和噪声进行分析,必须要进行随机过程的理论进行研究。须要进行随机过程的理论进行研究。3本讲稿第三页,共七十六页第第2章章
2、随机过程随机过程l2.1 随机过程的基本概念随机过程的基本概念n什么是随机过程?u随机过程是一类随时间作随机变化的过程,它不能用确切的时间函数描述。可从两种不同角度看:u角度1:在给定的观察区间内,是一个时间t的函数。其中每个时间函数称为实现,随机过程就可以看成是一个全部实现构成的总体。4本讲稿第四页,共七十六页第第2章章 随机过程随机过程【例】n台示波器同时观测并记录这n台接收机的输出噪声波形 p样本函数i(t):随机过程的一次实现,是确定的时间函数。p随机过程:(t)=1(t),2(t),n(t)是全部样本函数的集合。5本讲稿第五页,共七十六页第第2章章 随机过程随机过程u角度2:随机过程
3、是随机变量概念的延伸。p在任一给定时刻t1上,每一个样本函数i(t)都是一个确定的数值i(t1),但是每个i(t1)都是不可预知的。p在一个固定时刻t1上,不同样本的取值i(t1),i=1,2,n是一个随机变量,记为(t1)。p换句话说,随机过程在任意时刻的值是一个随机变量。p因此,我们又可以把随机过程看作是在时间进程中处于不同时刻的随机变量的集合。p这个角度更适合对随机过程理论进行精确的数学描述。6本讲稿第六页,共七十六页l与随机变量相比,随机过程和随机变量的与随机变量相比,随机过程和随机变量的样本空间不同:样本空间不同:l1,随机变量的样本空间是一个实数集合。,随机变量的样本空间是一个实数
4、集合。l2,随机过程的样本空间是一个时间函数的,随机过程的样本空间是一个时间函数的集合。即随机过程是含有随机变量的时间集合。即随机过程是含有随机变量的时间函数,同时随机过程是在时间进程中处于函数,同时随机过程是在时间进程中处于不同时刻的随机变量的集合。不同时刻的随机变量的集合。l故随机过程具有随机变量和时间函数的特故随机过程具有随机变量和时间函数的特点,不能写出其数学表达式。点,不能写出其数学表达式。7本讲稿第七页,共七十六页第第2章章 随机过程随机过程n2.1.1随机过程的分布函数u设(t)表示一个随机过程,则它在任意时刻t1的值(t1)是一个随机变量,其统计特性可以用分布函数或概率密度函数
5、来描述。u随机过程(t)的一维分布函数:u随机过程(t)的一维概率密度函数:若上式中的偏导存在的话。8本讲稿第八页,共七十六页第第2章章 随机过程随机过程u随机过程(t)的二维分布函数:u随机过程(t)的二维概率密度函数:若上式中的偏导存在的话。u随机过程(t)的n维分布函数:u随机过程(t)的n维概率密度函数:9本讲稿第九页,共七十六页第第2章章 随机过程随机过程n2.1.2 随机过程的数字特征u均值(数学期望):在任意给定时刻t1的取值(t1)是一个随机变量,其均值式中 f(x1,t1)(t1)的概率密度函数由于t1是任取的,所以可以把 t1 直接写为t,x1改为x,这样上式就变为10本讲
6、稿第十页,共七十六页第第2章章 随机过程随机过程 (t)的均值是时间的确定函数,常记作a(t),它表示随机过程的n个样本函数曲线的摆动中心:a(t)11本讲稿第十一页,共七十六页第第2章章 随机过程随机过程u方差方差常记为 2(t)。这里也把任意时刻t1直接写成了t。因为所以,方差等于均方值与均值平方之差,它表示随机过程在时刻 t 对于均值a(t)的偏离程度。均方值均值平方12本讲稿第十二页,共七十六页第第2章章 随机过程随机过程u相关函数 式中,(t1)和(t2)分别是在t1和t2时刻观测得到的随机变量。可以看出,R(t1,t2)是两个变量t1和t2的确定函数。u协方差函数式中 a(t1)a
7、(t2)在t1和t2时刻得到的(t)的均值 f2(x1,x2;t1,t2)(t)的二维概率密度函数。13本讲稿第十三页,共七十六页第第2章章 随机过程随机过程u相关函数和协方差函数之间的关系若a(t1)=0或a(t2)=0,则B(t1,t2)=R(t1,t2)因此,R(t1,t2)又称为自相关函数,B(t1,t2)又称自协方差函数。u互相关函数和互协方差函数若(t)和(t)分别表示两个随机过程,则 分别称为互相关函数和互协方差函数14本讲稿第十四页,共七十六页l设设Z(t)=X1cos()X2sin()是一个)是一个随机过程,若随机过程,若X1和和X2是彼此独立且具有均值为零、是彼此独立且具有
8、均值为零、方差为方差为 的正态随机变量,求:的正态随机变量,求:l(1)数学期望)数学期望Ez(t)、Ez2(t);l(2)z(t)的一维概率密度函数)的一维概率密度函数f(t););l(3)相关函数)相关函数R(t1,t2)。)。15本讲稿第十五页,共七十六页第第2章章 随机过程随机过程l2.2 平稳随机过程平稳随机过程n2.2.1 平稳随机过程的定义u定义:若一个随机过程(t)的任意有限维概率密度函数与时间起点无关,也就是说,对于任意的正整数n和所有实数,有则称该随机过程是在严格意义下的平稳随机过程,简称严平稳随机过程。16本讲稿第十六页,共七十六页第第2章章 随机过程随机过程u性质:该定
9、义表明,平稳随机过程的统计特性不随时间的推移而改变,即它的一维分布函数与时间t无关:而二维分布函数只与时间间隔=t2 t1有关:u数字特征:可见,(1)其均值与t无关,为常数a;(2)自相关函数只与时间间隔有关。17本讲稿第十七页,共七十六页第第2章章 随机过程随机过程u数字特征:可见,(1)其均值与t 无关,为常数a;(2)自相关函数只与时间间隔 有关。把同时满足(1)和(2)的过程定义为广义平稳随机过程。显然,严平稳随机过程必定是广义平稳的,反之不一定成立。在通信系统中所遇到的信号及噪声,大多数可视为平稳的随机过程。因此,研究平稳随机过程有着很大的实际意义。18本讲稿第十八页,共七十六页第
10、第2章章 随机过程随机过程n2.2.2 各态历经性u问题的提出:我们知道,随机过程的数字特征(均值、相关函数)是对随机过程的所有样本函数的统计平均,但在实际中常常很难测得大量的样本,这样,我们自然会提出这样一个问题:能否从一次试验而得到的一个样本函数x(t)来决定平稳过程的数字特征呢?u回答是肯定的。平稳过程在满足一定的条件下具有一个有趣而又非常有用的特性,称为“各态历经性”(又称“遍历性”)。具有各态历经性的过程,其数字特征(均为统计平均)完全可由随机过程中的任一实现的时间平均值来代替。u下面,我们来讨论各态历经性的条件。19本讲稿第十九页,共七十六页第第2章章 随机过程随机过程u各态历经性
11、条件设:x(t)是平稳过程(t)的任意一次实现(样本),则其时间均值和时间相关函数分别定义为:如果平稳过程使下式成立则称该平稳过程具有各态历经性。20本讲稿第二十页,共七十六页第第2章章 随机过程随机过程u“各态历经”的含义是:随机过程中的任一次实现都经历了随机过程的所有可能状态。因此,在求解各种统计平均(均值或自相关函数等)时,无需作无限多次的考察,只要获得一次考察,用一次实现的“时间平均”值代替过程的“统计平均”值即可,从而使测量和计算的问题大为简化。u具有各态历经的随机过程一定是平稳过程,反之不一定成立。在通信系统中所遇到的随机信号和噪声,一般均能满足各态历经条件。21本讲稿第二十一页,
12、共七十六页第第2章章 随机过程随机过程u 例2-1 设一个随机相位的正弦波为其中,A和c均为常数;是在(0,2)内均匀分布的随机变量。试讨论(t)是否具有各态历经性。【解】(1)先求(t)的统计平均值:数学期望22本讲稿第二十二页,共七十六页第第2章章 随机过程随机过程自相关函数令t2 t1=,得到可见,(t)的数学期望为常数,而自相关函数与t 无关,只与时间间隔 有关,所以(t)是广义平稳过程。23本讲稿第二十三页,共七十六页第第2章章 随机过程随机过程(2)求(t)的时间平均值比较统计平均与时间平均,有因此,随机相位余弦波是各态历经的。24本讲稿第二十四页,共七十六页第第2章章 随机过程随
13、机过程n2.2.3 平稳过程的自相关函数u平稳过程自相关函数的定义:同前u平稳过程自相关函数的性质p (t)的平均功率p 的偶函数p R()的上界即自相关函数R()在=0有最大值。p (t)的直流功率p 表示平稳过程(t)的交流功率。当均值为0时,有 R(0)=2 。25本讲稿第二十五页,共七十六页第第2章章 随机过程随机过程n2.2.4 平稳过程的功率谱密度u定义:p对于任意的确定功率信号f(t),它的功率谱密度定义为式中,FT()是f(t)的截短函数fT(t)所对应的频谱函数26本讲稿第二十六页,共七十六页第第2章章 随机过程随机过程p对于平稳随机过程(t),可以把f(t)当作是(t)的一
14、个样本;某一样本的功率谱密度不能作为过程的功率谱密度。过程的功率谱密度应看作是对所有样本的功率谱的统计平均,故(t)的功率谱密度可以定义为27本讲稿第二十七页,共七十六页第第2章章 随机过程随机过程u功率谱密度的计算p维纳-辛钦关系 非周期的功率型确知信号的自相关函数与其功率谱密度是一对傅里叶变换。这种关系对平稳随机过程同样成立,即有简记为以上关系称为维纳-辛钦关系。它在平稳随机过程的理论和应用中是一个非常重要的工具,它是联系频域和时域两种分析方法的基本关系式。28本讲稿第二十八页,共七十六页第第2章章 随机过程随机过程p在维纳-辛钦关系的基础上,我们可以得到以下结论:对功率谱密度进行积分,可
15、得平稳过程的总功率:上式从频域的角度给出了过程平均功率的计算法。各态历经过程的任一样本函数的功率谱密度等于过程的功率谱密度。也就是说,每一样本函数的谱特性都能很好地表现整个过程的的谱特性。【证】因为各态历经过程的自相关函数等于任一样本的自相关函数,即 两边取傅里叶变换:即式中 29本讲稿第二十九页,共七十六页第第2章章 随机过程随机过程功率谱密度P(f)具有非负性和实偶性,即有和这与R()的实偶性相对应。30本讲稿第三十页,共七十六页第第2章章 随机过程随机过程p例2-2 求随机相位余弦波(t)=Acos(ct+)的自相关函数和功率谱密度。【解】在例2-1中,我们已经考察随机相位余弦波是一个平
16、稳过程,并且求出其相关函数为因为平稳随机过程的相关函数与功率谱密度是一对傅里叶变换,即有 以及由于有所以,功率谱密度为平均功率为 31本讲稿第三十一页,共七十六页第第2章章 随机过程随机过程l 2.3 高斯随机过程(正态随机过程)高斯随机过程(正态随机过程)l高斯过程又称正态随机过程,它普遍存在并十分重要,是通信领域中最重要的一种过程。如在通信信道中的噪声通常是一种高斯过程,因而在信道建模中常用到高斯过程。n2.3.1 定义u如果随机过程(t)的任意n维(n=1,2,.)分布均服从正态分布,则称它为正态过程或高斯过程。32本讲稿第三十二页,共七十六页第第2章章 随机过程随机过程n 2.3.2
17、重要性质u由高斯过程的定义式可以看出,高斯过程的n维分布只依赖各个随机变量的均值、方差和归一化协方差。因此,对于高斯过程,只需要研究任意一个随机变量的数字特征就可以了。u广义平稳的高斯过程也是严平稳的。因为,若高斯过程是广义平稳的,即其均值与时间无关,自相关函数只与时间间隔有关,而与时间起点无关,则它的n维分布也与时间起点无关,故它也是严平稳的。所以,高斯过程若是广义平稳的,则也严平稳。33本讲稿第三十三页,共七十六页第第2章章 随机过程随机过程u如果高斯过程在不同时刻的取值是不相关的,即对所有j k,有bjk=0,则其概率密度可以简化为这表明,如果高斯过程在不同时刻的取值是不相关的,那么它们
18、也是统计独立的。u高斯过程经过线性变换后生成的过程仍是高斯过程。也可以说,若线性系统的输入为高斯过程,则系统输出也是高斯过程。34本讲稿第三十四页,共七十六页第第2章章 随机过程随机过程n 2.3.3 高斯随机变量u定义:高斯过程在任一时刻上的取值是一个正态分布的随机变量,也称高斯随机变量,其一维概率密度函数为式中a 均值 2 方差曲线如右图:35本讲稿第三十五页,共七十六页第第2章章 随机过程随机过程u性质pf(x)对称于直线 x=a,即p pa表示分布中心,对不同的a,表现为f(x)的图形左右平移。称为标准偏差,表示集中程度,图形将随着 的减小而变高和变窄。当a=0和=1时,称为标准化的正
19、态分布:36本讲稿第三十六页,共七十六页第第2章章 随机过程随机过程u正态分布函数 这个积分的值无法用闭合形式计算,通常利用其他特殊函数,用查表的方法求出:p用误差函数表示正态分布函数:令 则有 及 式中 误差函数,可以查表求出其值。37本讲稿第三十七页,共七十六页第第2章章 随机过程随机过程p用互补误差函数erfc(x)表示正态分布函数:式中当x 2时,38本讲稿第三十八页,共七十六页第第2章章 随机过程随机过程p用Q函数表示正态分布函数:Q函数定义:Q函数和erfc函数的关系:Q函数和分布函数F(x)的关系:Q函数值也可以从查表得到。39本讲稿第三十九页,共七十六页第第2章章 随机过程随机
20、过程l2.4.3 高斯白噪声和带限白噪声高斯白噪声和带限白噪声n白噪声n(t)u定义:功率谱密度在所有频率上均为常数的噪声,即 双边功率谱密度或 单边功率谱密度式中 n0 正常数u白噪声的自相关函数:对双边功率谱密度取傅里叶反变换,得到相关函数:40本讲稿第四十页,共七十六页第第2章章 随机过程随机过程u白噪声和其自相关函数的曲线:41本讲稿第四十一页,共七十六页第第2章章 随机过程随机过程u白噪声的功率由于白噪声的带宽无限,其平均功率为无穷大,即或p因此,真正“白”的噪声是不存在的,它只是构造的一种理想化的噪声形式。p实际中,只要噪声的功率谱均匀分布的频率范围远远大于通信系统的工作频带,我们
21、就可以把它视为白噪声。p如果白噪声取值的概率分布服从高斯分布,则称之为高斯白噪声。p高斯白噪声在任意两个不同时刻上的随机变量之间,不仅是互不相关的,而且还是统计独立的。42本讲稿第四十二页,共七十六页第第2章章 随机过程随机过程n低通白噪声u定义:如果白噪声通过理想矩形的低通滤波器或理想低通信道,则输出的噪声称为低通白噪声。u功率谱密度p由上式可见,白噪声的功率谱密度被限制在|f|fH内,通常把这样的噪声也称为带限白噪声。u自相关函数43本讲稿第四十三页,共七十六页第第2章章 随机过程随机过程u功率谱密度和自相关函数曲线p由曲线看出,这种带限白噪声只有在上得到的随机变量才不相关。44本讲稿第四
22、十四页,共七十六页第第2章章 随机过程随机过程l2.5 窄带随机过程窄带随机过程 n什么是窄带随机过程?若随机过程(t)的谱密度集中在中心频率fc附近相对窄的频带范围f 内,即满足f fc的条件,且 fc 远离零频率,则称该(t)为窄带随机过程。45本讲稿第四十五页,共七十六页第第2章章 随机过程随机过程n典型的窄带随机过程的谱密度和样本函数 46本讲稿第四十六页,共七十六页第第2章章 随机过程随机过程n窄带随机过程的表示式式中,a(t)随机包络,(t)随机相位 c 中心角频率显然,a(t)和(t)的变化相对于载波cos ct的变化要缓慢得多。47本讲稿第四十七页,共七十六页第第2章章 随机过
23、程随机过程n窄带随机过程表示式展开可以展开为式中 (t)的同相分量 (t)的正交分量可以看出:(t)的统计特性由a(t)和(t)或c(t)和s(t)的统计特性确定。若(t)的统计特性已知,则a(t)和(t)或c(t)和s(t)的统计特性也随之确定。48本讲稿第四十八页,共七十六页第第2章章 随机过程随机过程n2.5.1 c(t)和s(t)的统计特性n设窄带随机过程(t)是均值为零的平稳高斯随机过程,即窄带高斯过程,则该过程(t)的p数学期望:对下式求数学期望:得到 因为(t)平稳且均值为零,故对于任意的时间t,都有E(t)=0,所以 49本讲稿第四十九页,共七十六页第第2章章 随机过程随机过程
24、p(t)的自相关函数:由自相关函数的定义式式中因为(t)是平稳的,故有这就要求上式的右端与时间t无关,而仅与有关。因此,若令 t=0,上式仍应成立,它变为50本讲稿第五十页,共七十六页第第2章章 随机过程随机过程因与时间t无关,以下二式自然成立所以,上式变为再令 t=/2c,同理可以求得由以上分析可知,若窄带过程(t)是平稳的,则c(t)和s(t)也必然是广义平稳的。51本讲稿第五十一页,共七十六页第第2章章 随机过程随机过程p进一步分析,下两式应同时成立,故有上式表明,同相分量c(t)和正交分量s(t)具有相同的自相关函数。根据互相关函数的性质,应有代入上式,得到上式表明Rsc()是 的奇函
25、数,所以同理可证 52本讲稿第五十二页,共七十六页第第2章章 随机过程随机过程将代入下两式得到即上式表明(t)、c(t)和s(t)具有相同的平均功率或方差。53本讲稿第五十三页,共七十六页第第2章章 随机过程随机过程p根据平稳性,过程的特性与变量t无关,故由式 得到因为(t)是高斯过程,所以,c(t1),s(t2)一定是高斯随机变量,从而c(t)、s(t)也是高斯过程。p根据可知,c(t)与s(t)在=0处互不相关,又由于它们是高斯型的,因此c(t)与s(t)也是统计独立的。54本讲稿第五十四页,共七十六页第第2章章 随机过程随机过程u结论:一个均值为零的窄带平稳高斯过程(t),它的同相分量c
26、(t)和正交分量s(t)同样是平稳高斯过程,而且均值为零,方差也相同。此外,在同一时刻上得到的c和s是互不相关的或统计独立的。55本讲稿第五十五页,共七十六页第第2章章 随机过程随机过程n2.5.2 a(t)和(t)的统计特性u联合概率密度函数 f(a,)根据概率论知识有由可以求得56本讲稿第五十六页,共七十六页第第2章章 随机过程随机过程于是有式中a 0,=(0 2)57本讲稿第五十七页,共七十六页第第2章章 随机过程随机过程ua的一维概率密度函数可见,a服从瑞利(Rayleigh)分布。58本讲稿第五十八页,共七十六页第第2章章 随机过程随机过程u的一维概率密度函数可见,服从均匀分布。59
27、本讲稿第五十九页,共七十六页第第2章章 随机过程随机过程u结论一个均值为零,方差为2的窄带平稳高斯过程(t),其包络a(t)的一维分布是瑞利分布,相位(t)的一维分布是均匀分布,并且就一维分布而言,a(t)与(t)是统计独立的,即有 60本讲稿第六十页,共七十六页第第2章章 随机过程随机过程l2.6 平稳随机过程通过线性系统平稳随机过程通过线性系统n确知信号通过线性系统(复习):式中 vi 输入信号,vo 输出信号对应的傅里叶变换关系:n随机信号通过线性系统:u假设:i(t)是平稳的输入随机过程,a 均值,Ri()自相关函数,Pi()功率谱密度;求输出过程o(t)的统计特性,即它的均值、自相关
28、函数、功率谱以及概率分布。61本讲稿第六十一页,共七十六页第第2章章 随机过程随机过程u输出过程o(t)的均值 对下式两边取统计平均:得到设输入过程是平稳的,则有 式中,H(0)是线性系统在 f=0处的频率响应,因此输出过程的均值是一个常数。62本讲稿第六十二页,共七十六页l即输出随机过程的数学期望等于输入随机即输出随机过程的数学期望等于输入随机过程的数学期望乘以过程的数学期望乘以H(0)。)。l其物理意义是:平稳随机过程通过线性系其物理意义是:平稳随机过程通过线性系统后,输出的直流分量等于输入的直流分统后,输出的直流分量等于输入的直流分量乘以系统的直流传递函数。量乘以系统的直流传递函数。63
29、本讲稿第六十三页,共七十六页第第2章章 随机过程随机过程u输出过程o(t)的自相关函数:根据自相关函数的定义根据输入过程的平稳性,有于是 上式表明,输出过程的自相关函数仅是时间间隔 的函数。由上两式可知,若线性系统的输入是平稳的,则输出也是平稳的。64本讲稿第六十四页,共七十六页l因此,可得推论如下:因此,可得推论如下:l(1)输入是各态经历的随机过程,输出也)输入是各态经历的随机过程,输出也是各态历经的随机过程。是各态历经的随机过程。l(2)输入是高斯过程,输出也是高斯过程,)输入是高斯过程,输出也是高斯过程,只是均值和方差发生了变化。只是均值和方差发生了变化。65本讲稿第六十五页,共七十六
30、页第第2章章 随机过程随机过程u输出过程o(t)的功率谱密度对下式进行傅里叶变换:得出令 =+-,代入上式,得到即结论:输出过程的功率谱密度是输入过程的功率谱密度乘以系统频率响应模值的平方。应用:由Po(f)的反傅里叶变换求Ro()66本讲稿第六十六页,共七十六页第第2章章 随机过程随机过程u输出过程o(t)的概率分布p如果线性系统的输入过程是高斯型的,则系统的输出过程也是高斯型的。因为从积分原理看,可以表示为:由于已假设i(t)是高斯型的,所以上式右端的每一项在任一时刻上都是一个高斯随机变量。因此,输出过程在任一时刻上得到的随机变量就是无限多个高斯随机变量之和。由概率论理论得知,这个“和”也
31、是高斯随机变量,因而输出过程也为高斯过程。注意,与输入高斯过程相比,输出过程的数字特征已经改变了。67本讲稿第六十七页,共七十六页2.6.5 输入输出的互相关函数l互相关函数指的是系统输入输出之间的相关互相关函数指的是系统输入输出之间的相关性。由相关函数的定义可知,输入输出之间性。由相关函数的定义可知,输入输出之间的相关函数为的相关函数为68本讲稿第六十八页,共七十六页l可见,输入输出的互相关函数等于输入的可见,输入输出的互相关函数等于输入的自相关函数与系统冲击响应的卷积。自相关函数与系统冲击响应的卷积。l例例2.5 输入是功率谱密度为输入是功率谱密度为N0/2的高斯白的高斯白噪声,求其线性网
32、络输入与输出的互相关噪声,求其线性网络输入与输出的互相关函数。函数。69本讲稿第六十九页,共七十六页2.7 平稳随机过程通过乘法器l前面我们讨论了平稳随机过程通过线性系前面我们讨论了平稳随机过程通过线性系统传输后输出仍为平稳随机过程。但是在统传输后输出仍为平稳随机过程。但是在通信系统中除了存在线性系统之外,还存通信系统中除了存在线性系统之外,还存在着许多非线性系统,最典型的非线性系在着许多非线性系统,最典型的非线性系统统(网络网络)就是乘法器。就是乘法器。l下面我们讨论随机过程经过乘法器传输的下面我们讨论随机过程经过乘法器传输的问题。问题。70本讲稿第七十页,共七十六页l与线性系统相对应,这里
33、我们讨论同样的与线性系统相对应,这里我们讨论同样的两个问题:两个问题:a、输入是平稳随机过程。输出平稳否?、输入是平稳随机过程。输出平稳否?b、输入输出功率谱密度之间的关系。、输入输出功率谱密度之间的关系。l平稳随机过程经过乘法器如图所示。平稳随机过程经过乘法器如图所示。71本讲稿第七十一页,共七十六页l其输出为其输出为 从广义平稳判定条件可知,若要判定从广义平稳判定条件可知,若要判定o(t)是否是否平稳平稳,要看其均值是否为常数、自相关函数是否要看其均值是否为常数、自相关函数是否只和只和有关。有关。首先先讨论均值问题。首先先讨论均值问题。Eo(t)常数,就可以判定常数,就可以判定o(t)不平
34、稳。不平稳。72本讲稿第七十二页,共七十六页l2.o(t)的自相关函数的自相关函数l可见可见o(t)的自相关函数也与时间的自相关函数也与时间t有关,有关,l结论:平稳随机过程经乘法器传输后,输结论:平稳随机过程经乘法器传输后,输出不再是平稳随机过程。出不再是平稳随机过程。73本讲稿第七十三页,共七十六页lo(t)的自相关函数的时间平均值为的自相关函数的时间平均值为l由于平稳随机过程经乘法器传输后,输出由于平稳随机过程经乘法器传输后,输出已不再是平稳随机过程,因此,输出信号已不再是平稳随机过程,因此,输出信号的功率谱密度为:的功率谱密度为:74本讲稿第七十四页,共七十六页所以,平稳随机过程经乘法器后,输出信号所以,平稳随机过程经乘法器后,输出信号的功率谱密度的幅度为原来的的功率谱密度的幅度为原来的1/4,位置分别位置分别移到载波角频率移到载波角频率c 处,如下图所示处,如下图所示75本讲稿第七十五页,共七十六页76本讲稿第七十六页,共七十六页