《多重比较与方差齐性检验讲稿.ppt》由会员分享,可在线阅读,更多相关《多重比较与方差齐性检验讲稿.ppt(26页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、多重比较与方差齐性检验第一页,讲稿共二十六页哦由于 ,故由此给出i-j的置信水平为1-的置信区间为 (8.2.1)其中 是 2的无偏估计。这里的置信区间与第六章中的两样本的t区间基本一致,区别在于这里 2的估计使用了全部样本而不仅仅是两个水平Ai,Aj下的观测值。第二页,讲稿共二十六页哦例8.2.1 继续例8.1.2,fe=21,取0.05,则t1-/2(fe)=t0.975(21)=2.0796,于是可算出各个置信区间为 可见第一个区间在0的左边,所以我们可以概率95%断言认为1 小于2,其它二个区间包含0点,虽然从点估计角度看水平均值估计有差别,但这种差异在0.05水平上是不显著的。第三页
2、,讲稿共二十六页哦8.2.2 多重比较问题 对每一组(i,j),(8.2.1)给出的区间的置信水平都是1,但对多个这样的区间,要求其同时成立,其联合置信水平就不再是1 了。譬如,设E1,Ek是k个随机事件,且有 P(Ei)=1,i=1,k,则其同时发生的概率 这说明它们同时发生的概率可能比1 小很多。为了使它们同时发生的概率不低于1,一个办法是把每个事件发生的概率提高到1/k.这将导致每个置信区间过长,联合置信区间的精度很差,一般人们不采用这种方法。第四页,讲稿共二十六页哦 在方差分析中,如果经过F检验拒绝原假设,表明因子A是显著的,即r个水平对应的水平均值不全相等,此时,我们还需要进一步确认
3、哪些水平均值间是确有差异的,哪些水平均值间无显著差异。同时比较任意两个水平均值间有无明显差异的问题称为多重比较,多重比较即要以显著性水平同时检验如下r(r1)/2个假设:(8.2.2)第五页,讲稿共二十六页哦 直观地看,当H0ij成立时,不应过大,因此,关于假设(8.2.2)的拒绝域应有如下形式 诸临界值应在(8.2.2)成立时由P(W)=确定。下面分重复数相等和不等分别介绍临界值的确定。第六页,讲稿共二十六页哦 8.2.3 重复数相等场合的T法 在重复数相等时,由对称性自然可以要求诸cij相等,记为c.记 ,则由给定条件不难有 第七页,讲稿共二十六页哦 于是当(8.2.2)成立时,1=r=,
4、可推出 其中 ,称为t化极差统计量,其分布可由随机模拟方法得到。于是 ,其中q1(r,fe)表示q(r,fe)的1 分位数,其值在附表8中给出。第八页,讲稿共二十六页哦 重复数相同时多重比较可总结如下:对给定的的显著性水平,查多重比较的分位数q(r,fe)表,计算 ,比较诸 与c的大小,若 则认为水平Ai与水平Aj间有显著差异,反之,则认为水平Ai与水平Aj间无明显差别。这一方法最早由Turkey提出,因此称为T法。第九页,讲稿共二十六页哦8.2.4 重复数不等场合的重复数不等场合的S法法在重复数不等时,若假设(8.2.2)成立,则 或 从而可以要求 ,在此要求下可推出第十页,讲稿共二十六页哦
5、可以证明 ,从而 亦即第十一页,讲稿共二十六页哦 例8.2.3 在例8.1.4中,我们指出包装方式对食品销量有明显的影响,此处r=4,fe=6,,若取=0.05,则F0.95(3,6)=4.76。注意到m1=m4=2,m2=m3=3,故第十二页,讲稿共二十六页哦 由于 这说明A1,A2,A3间无显著差异,A1,A2与A4有显著差异,但 A4与A3 的差异却尚未达到显著水平。综合上述,包装A4销售量最佳。第十三页,讲稿共二十六页哦8.3 方差齐性检验方差齐性检验 在进行方差分析时要求r个方差相等,这称为方差齐性。理论研究表明,当正态性假定不满足时对F检验影响较小,即F检验对正态性的偏离具有一定的
6、稳健性,而F检验对方差齐性的偏离较为敏感。所以r个方差的齐性检验就显得十分必要。所谓方差齐性检验是对如下一对假设作出检验:(8.3.1)第十四页,讲稿共二十六页哦 很多统计学家提出了一些很好的检验方法,这里介绍几个最常用的检验,它们是:Hartley检验,仅适用于样本量相等的场合;Bartlett检验,可用于样本量相等或不等 的场合,但是每个样本量不得低于5;修正的Bartlett检验,在样本量较小或较 大、相等或不等场合均可使用。第十五页,讲稿共二十六页哦8.3.1 Hartley检验检验 当各水平下试验重复次数相等时,即m1=m2=mr=m,Hartley提出检验方差相等的检验统计量:(8
7、.3.2)这个统计量的分布无明显的表达式,但在诸方差相等条件下,可通过随机模拟方法获得H分布的分位数,该分布依赖于水平数r 和样本方差的自由度f=m1,因此该分布可记为H(r,f),其分位数表列于附表10上。第十六页,讲稿共二十六页哦 直观上看,当H0成立,即诸方差相等(12=22=r2)时,H的值应接近于1,当H的值较大时,诸方差间的差异就大,H愈大,诸方差间的差异就愈大,这时应拒绝(8.3.1)中的H0。由此可知,对给定的显著性水平,检验H0的拒绝域为 W=H H1(r,f)(8.3.3)其中H1(r,f)为H分布的1 分位数。第十七页,讲稿共二十六页哦 例8.3.1 有四种不同牌号的铁锈
8、防护剂(简称防锈剂),现要比较其防锈能力。数据见表8.3.1。这是一个重复次数相等的单因子试验。我们考虑用方差分析方法对之进行比较分析,为此,首先要进行方差齐性检验。第十八页,讲稿共二十六页哦 本例中,四个样本方差可由表8.3.1中诸Qi求出,即 由此可得统计量H的值 在=0.05时,由附表10查得H0.95(4,9)=6.31,由于H d (8.3.4)Bartlett证明了,检验的拒绝域为 W=B 1-2(r-1)(8.3.8)考虑到这里2分布是近似分布,在诸样本量mi均不小于5时使用上述检验是适当的。第二十一页,讲稿共二十六页哦 例8.3.2 为研究各产地的绿茶的叶酸含量是否有显著差异,
9、特选四个产地绿茶,其中A1制作了7个样品,A2制作了5个样品,A3与A4各制作了6个样品,共有24个样品,按随机次序测试其叶酸含量,测试结果如表8.3.3所示。第二十二页,讲稿共二十六页哦 为能进行方差分析,首先要进行方差齐性检验,从表8.3.3中数据可求得s12=2.14,s22=2.83,s32=2.41,s42=1.12,再从表8.3.4上查得MSe=2.09,由(8.3.6),可求得 再由(8.3.7),还可求得Bartlett检验统计量的值 对给定的显著性水平=0.05,查表知0.952(41)=7.815。由于B7.815,故应保留原假设H0,即可认为诸水平下的方差间无显著差异。第
10、二十三页,讲稿共二十六页哦8.3.3 修正的修正的Bartlett检验检验 针对样本量低于5时不能使用Bartlett检验的缺点,Box提出修正的Bartlett检验统计量 (8.3.9)其中B与C如(8.3.7)与(8.3.6)所示,且第二十四页,讲稿共二十六页哦 在原假设H0:12=22=r2成立下,Box还证明了统计量 的近似分布是F分布F(f1,f2),对给定的显著性水平,该检验的拒绝域为 (8.3.10)其中f2的值可能不是整数,这时可通过对F分布的分位数表施行内插法得到分位数。第二十五页,讲稿共二十六页哦 例8.3.3 对例8.3.2中的绿茶叶酸含量的数据,我们用修正的Bartlett检验再一次对等方差性作出检验。在例8.3.2中已求得:C=1.0856,B=0.970,还可求得:对给定的显著性水平=0.05,在F分布的分位数表上可查得 F0.95(3,682.4)=F0.95(3,)=2.60 由于 2.60,故保留原假设H0,即认为四个水平下的方差间无显著差异。第二十六页,讲稿共二十六页哦