EXCEL常用财务函数tfk.docx

上传人:jix****n11 文档编号:46981322 上传时间:2022-09-28 格式:DOCX 页数:6 大小:22.25KB
返回 下载 相关 举报
EXCEL常用财务函数tfk.docx_第1页
第1页 / 共6页
EXCEL常用财务函数tfk.docx_第2页
第2页 / 共6页
点击查看更多>>
资源描述

《EXCEL常用财务函数tfk.docx》由会员分享,可在线阅读,更多相关《EXCEL常用财务函数tfk.docx(6页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、EXCEL常用财务函数EXCEL提供了许多财务函数,这些函数大体上可分为四类:投资计算函数、折旧计算函数、偿还率计算函数、债券及其他金融函数。这些函数为财务分析提供了极大的便利。利用这些函数,可以进行一般的财务计算,如确定贷款的支付额、投资的未来值或净现值,以及债券或息票的价值等等。 使用这些函数不必理解高级财务知识,只要填写变量值就可以了。 下面给出了财务函数列表。(1) 投资计算函数 函数名称 函 数功 能 EFFECT 计算实际年利息率 FV 计算投资的未来值 FVSCHEDULE 计算原始本金经一系列复利率计算之后的未来值 IPMT 计算某投资在给定期间内的支付利息 NOMINAL 计

2、算名义年利率 NPER 计算投资的周期数 NPV 在已知定期现金流量和贴现率的条件下计算某项投资的净现值 PMT 计算某项年金每期支付金额 PPMT 计算某项投资在给定期间里应支付的本金金额 PV 计算某项投资的净现值 XIRR 计算某一组不定期现金流量的内部报酬率 XNPV 计算某一组不定期现金流量的净现值 (2) 折旧计算函数 函数名称 函 数功 能 AMORDEGRC 计算每个会计期间的折旧值 DB 计算用固定定率递减法得出的指定期间内资产折旧值 DDB 计算用双倍余额递减或其它方法得出的指定期间内资产折旧值 SLN 计算一个期间内某项资产的直线折旧值 SYD 计算一个指定期间内某项资产

3、按年数合计法计算的折旧值 VDB 计算用余额递减法得出的指定或部分期间内的资产折旧值 (3) 偿还率计算函数 函数名称 函 数功 能 IRR 计算某一连续现金流量的内部报酬率 MIRR 计算内部报酬率。此外正、负现金流量以不同利率供给资金计算 RATE 计算某项年金每个期间的利率 (4) 债券及其他金融函数 函数名称 函 数功 能 ACCRINTM 计算到期付息证券的应计利息 COUPDAYB 计算从付息期间开始到结算日期的天数 COUPDAYS 计算包括结算日期的付息期间的天数 COUPDAYSNC 计算从结算日期到下一个付息日期的天数 COUPNCD 计算结算日期后的下一个付息日期 COU

4、PNUM 计算从结算日期至到期日期之间的可支付息票数 COUPPCD 计算结算日期前的上一个付息日期 CUMIPMT 计算两期之间所支付的累计利息 CUMPRINC 计算两期之间偿还的累计本金 DISC 计算证券的贴现率 DOLLARDE 转换分数形式表示的货币为十进制表示的数值 DOLLARFR 转换十进制形式表示的货币分数表示的数值 DURATION 计算定期付息证券的收现平均期间 INTRATE 计算定期付息证券的利率 ODDFPRICE 计算第一个不完整期间面值$100的证券价格 ODDFYIELD 计算第一个不完整期间证券的收益率 ODDLPRICE 计算最后一个不完整期间面值$10

5、0的证券价格 ODDLYIELD 计算最后一个不完整期间证券的收益率 PRICE 计算面值$100定期付息证券的单价 PRICEDISC 计算面值$100的贴现证券的单价 PRICEMAT 计算面值$100的到期付息证券的单价 PECEIVED 计算全投资证券到期时可收回的金额 TBILLPRICE 计算面值$100的国库债券的单价 TBILLYIELD 计算国库债券的收益率 YIELD 计算定期付息证券的收益率 YIELDDISC 计算贴现证券的年收益额 YIELDMAT 计算到期付息证券的年收益率 在财务函数中有两个常用的变量:f和b,其中f为年付息次数,如果按年支付,则f=1;按半年期支

6、付,则f=2;按季支付,则f=4。b为日计数基准类型,如果日计数基准为“US(NASD)30/360”,则b=0或省略;如果日计数基准为“实际天数/实际天数”,则b=1;如果日计数基准为“实际天数/360”,则b=2;如果日计数基准为“实际天数/365”,则b=3如果日计数基准为“欧洲30/360”,则b=4。 下面介绍一些常用的财务函数。 1 ACCRINT( is, fs, s, r,p,f,b) 该函数返回定期付息有价证券的应计利息。其中is为有价证券的发行日,fs为有价证券的起息日,s为有价证券的成交日,即在发行日之后,有价证券卖给购买者的日期,r为有价证券的年息票利率,p为有价证券的

7、票面价值,如果省略p,函数ACCRINT就会自动将p设置为¥1000,f为年付息次数,b为日计数基准类型。 例如,某国库券的交易情况为:发行日为95年1月31日;起息日为95年7月30日;成交日为95年5月1日,息票利率为8.0%;票面价值为¥3,000;按半年期付息;日计数基准为30/360,那么应计利息为: =ACCRINT(95/1/31,95/7/30,95/5/1,0.08,3000,2,0) 计算结果为:60.6667。 2. ACCRINTM(is, m, r, p, b) 该函数返回到期一次性付息有价证券的应计利息。其中i为有价证券的发行日,m为有价证券的到期日,r为有价证券的

8、年息票利率,p为有价证券的票面价值,如果省略p, 函数ACCRINTM就会自动将p为¥1000,b为日计数基准类型。 例如,一个短期债券的交易情况如下:发行日为95年5月1日;到期日为95年7月18日;息票利息为9.0%;票面价值为¥1,000;日计数基准为实际天数/365。那么应计利息为: =ACCRINTM(95/5/1,95/7/18,0.09,1000,3) 计算结果为:19.23228。 3CUMPRINC(r,np,pv,st,en,t) 该函数返回一笔货款在给定的st到en期间累计偿还的本金数额。其中r为利率,np为总付款期数,pv为现值,st为计算中的首期,付款期数从1开始计数

9、,en为计算中的末期,t为付款时间类型,如果为期末,则t=0,如果为期初,则t=1。 例如,一笔住房抵押贷款的交易情况如下:年利率为9.00%;期限为25年;现值为¥110,000。由上述已知条件可以计算出:r=9.00%/12=0.0075,np=30*12=360。那么该笔贷款在第下半年偿还的全部本金之中(第7期到第12期)为: CUMPRINC(0.0075,360,110000,7,12,0) 计算结果为:-384.180。 该笔贷款在第一个月偿还的本金为: =CUMPRINC(0.0075,360,110000,1,1,0) 计算结果为:-60.0849。 4DISC(s,m,pr,

10、r,b) 该函数返回有价证券的贴现率。其中s为有价证券的成交日,即在发行日之后,有价证券卖给购买者的日期,m为有价证券的到日期,到期日是有价证券有效期截止时的日期,pr为面值为“¥100”的有价证券的价格,r为面值为“¥100”的有价证券的清偿价格,b为日计数基准类型。 例如:某债券的交易情况如下:成交日为95年3月18日,到期日为95年8月7日,价格为¥45.834,清偿价格为¥48,日计数基准为实际天数/360。那么该债券的贴现率为: DISC(95/3/18,95/8/7,45.834,48,2) 计算结果为:0.114401。5EFFECT(nr,np) 该函数利用给定的名义年利率和一

11、年中的复利期次,计算实际年利率。其中nr为名义利率,np为每年的复利期数。 例如:EFFECT(6.13%,4)的计算结果为0.062724或6.2724% 6. FV(r,np,p,pv,t)该函数基于固定利率及等额分期付款方式,返回某项投资的未来值。其中r为各期利率,是一固定值,np为总投资(或贷款)期,即该项投资(或贷款)的付款期总数,p为各期所应付给(或得到)的金额,其数值在整个年金期间(或投资期内)保持不变,通常P包括本金和利息,但不包括其它费用及税款,pv为现值,或一系列未来付款当前值的累积和,也称为本金,如果省略pv,则假设其值为零,t为数字0或1,用以指定各期的付款时间是在期初

12、还是期末,如果省略t,则假设其值为零。 例如:FV(0.6%,12,-200,-500,1)的计算结果为¥3,032.90; FV(0.9%,10,-1000)的计算结果为¥10,414.87; FV(11.5%/12,30,-2000,1)的计算结果为¥69,796.52。 又如,假设需要为一年后的一项工程预筹资金,现在将¥2000以年利4.5%,按月计息(月利为4.5%/12)存入储蓄存款帐户中,并在以后十二个月的每个月初存入¥200。那么一年后该帐户的存款额为: FV(4.5%/12, 12,-200,-2000,1) 计算结果为¥4,551.19。 7FVSCHEDULE(p,s) 该

13、函数基于一系列复利返回本金的未来值,它用于计算某项投资在变动或可调利率下的未来值。其中p为现值,s为利率数组。 例如:FVSCHEDULE(1,0.08,0.11,0.1)的计算结果为1.31868。 8IRR(v,g) 该函数返回由数值代表的一组现金流的内部收益率。这些现金流不一定必须为均衡的,但作为年金,它们必须按固定的间隔发生,如按月或按年。内部收益率为投资的回收利率,其中包含定期支付(负值)和收入(正值)。其中v为数组或单元格的引用,包含用来计算内部收益率的数字,v必须包含至少一个正值和一个负值,以计算内部收益率,函数IRR根据数值的顺序来解释现金流的顺序,故应确定按需要的顺序输入了支

14、付和收入的数值,如果数组或引用包含文本、逻辑值或空白单元格,这些数值将被忽略;g为对函数IRR计算结果的估计值,excel使用迭代法计算函数IRR从g开始,函数IRR不断修正收益率,直至结果的精度达到0.00001%,如果函数IRR经过20次迭代,仍未找到结果,则返回错误值#NUM!,在大多数情况下,并不需要为函数IRR的计算提供g值,如果省略g,假设它为0.1(10%)。如果函数IRR返回错误值#NUM!,或结果没有靠近期望值,可以给g换一个值再试一下。 例如,如果要开办一家服装商店,预计投资为¥110,000,并预期为今后五年的净收益为:¥15,000、¥21,000、¥28,000、¥3

15、6,000和¥45,000。 在工作表的B1:B6输入数据“函数.xls”所示,计算此项投资四年后的内部收益率IRR(B1:B5)为-3.27%;计算此项投资五年后的内部收益率IRR(B1:B6)为8.35%;计算两年后的内部收益率时必须在函数中包含g,即IRR(B1:B3,-10%)为-48.96%。 9NPV(r,v1,v2,.) 该函数基于一系列现金流和固定的各期贴现率,返回一项投资的净现值。投资的净现值是指未来各期支出(负值)和收入(正值)的当前值的总和。其中,r为各期贴现率,是一固定值;v1,v2,.代表1到29笔支出及收入的参数值,v1,v2,.所属各期间的长度必须相等,而且支付及

16、收入的时间都发生在期末,NPV按次序使用v1,v2,来注释现金流的次序。所以一定要保证支出和收入的数额按正确的顺序输入。如果参数是数值、空白单元格、逻辑值或表示数值的文字表示式,则都会计算在内;如果参数是错误值或不能转化为数值的文字,则被忽略,如果参数是一个数组或引用,只有其中的数值部分计算在内。忽略数组或引用中的空白单元格、逻辑值、文字及错误值。 例如,假设第一年投资¥8,000,而未来三年中各年的收入分别为¥2,000,¥3,300和¥5,100。假定每年的贴现率是10%,则投资的净现值是: NPV(10%,-8000,2000,3300,5800) 计算结果为:¥8208.98。该例中,

17、将开始投资的¥8,000作为v参数的一部分,这是因为付款发生在第一期的期末。(“函数.xls”文件) 下面考虑在第一个周期的期初投资的计算方式。又如,假设要购买一家书店,投资成本为¥80,000,并且希望前五年的营业收入如下:¥16,000,¥18, 000,¥22,000,¥25,000,和¥30,000。每年的贴现率为8%(相当于通贷膨胀率或竞争投资的利率),如果书店的成本及收入分别存储在B1到B6中,下面的公式可以计算出书店投资的净现值: NPV(8%,B2:B6)+B1 计算结果为:¥6,504.47。在该例中,一开始投资的¥80,000并不包含在v参数中,因为此项付款发生在第一期的期

18、初。 假设该书店的营业到第六年时,要重新装修门面,估计要付出¥11,000,则六年后书店投资的净现值为: NPV(8%,B2:B6,-15000)+B1 计算结果为:-¥2,948.08 10PMT(r,np,p,f,t) 该函数基于固定利率及等额分期付款方式,返回投资或贷款的每期付款额。其中,r为各期利率,是一固定值,np为总投资(或贷款)期,即该项投资(或贷款)的付款期总数,pv为现值,或一系列未来付款当前值的累积和,也称为本金,fv为未来值,或在最后一次付款后希望得到的现金余额,如果省略fv,则假设其值为零(例如,一笔贷款的未来值即为零),t为0或1,用以指定各期的付款时间是在期初还是期

19、末。如果省略t,则假设其值为零。 例如,需要10个月付清的年利率为8%的¥10,000贷款的月支额为: PMT(8%/12,10,10000) 计算结果为:-¥1,037.03。 又如,对于同一笔贷款,如果支付期限在每期的期初,支付额应为: PMT(8%/12,10,10000,0,1) 计算结果为:-¥1,030.16。 再如:如果以12%的利率贷出¥5,000,并希望对方在5个月内还清,那么每月所得款数为: PMT(12%/12,5,-5000) 计算结果为:¥1,030.20。 11PV(r,n,p,fv,t) 计算某项投资的现值。年金现值就是未来各期年金现在的价值的总和。如果投资回收的

20、当前价值大于投资的价值,则这项投资是有收益的。 例如,借入方的借入款即为贷出方贷款的现值。其中r(rage)为各期利率。如果按10%的年利率借入一笔贷款来购买住房,并按月偿还贷款,则月利率为10%/12(即0.83%)。可以在公式中输入10%/12、0.83%或 0.0083作为r的值;n(nper)为总投资(或贷款)期,即该项投资(或贷款)的付款期总数。对于一笔4年期按月偿还的住房贷款,共有4*12(即 48)个偿还期次。可以在公式中输入48作为n的值;p(pmt)为各期所应付给(或得到)的金额,其数值在整个年金期间(或投资期内)保持不变,通常p 包括本金和利息,但不包括其他费用及税款。例如

21、,¥10,000的年利率为12%的四年期住房贷款的月偿还额为¥263.33,可以在公式中输入 263.33作为p的值;fv为未来值,或在最后一次支付后希望得到的现金余额,如果省略fv,则假设其值为零(一笔贷款的未来值即为零)。 例如,如果需要在18年后支付¥50,000,则50,000就是未来值。可以根据保守估计的利率来决定每月的存款额;t(type)为数字0或1,用以指定各期的付款时间是在期初还是期末,如果省略t,则假设其值为零。 例如,假设要购买一项保险年金,该保险可以在今后二十年内于每月末回报¥500。此项年金的购买成本为60,000,假定投资回报率为8%。那么该项年金的现值为: PV(

22、0.08/12, 12*20,500,0) 计算结果为:-¥59,777.15。负值表示这是一笔付款,也就是支出现金流。年金(¥59,777.15)的现值小于实际支付的(¥60,000)。因此,这不是一项合算的投资。 在计算中要注意优质t和n所使用单位的致性。 12SLN(c,s,l) 该函数返回一项资产每期的直线折旧费。其中c为资产原值,s为资产在折旧期末的价值(也称为资产残值),1为折旧期限(有时也称作资产的生命周期)。例如,假设购买了一辆价值¥30,000的卡车,其折旧年限为10年,残值为¥7,500,那么每年的折旧额为: SLN(30000,7500,10) 计算结果为:¥2,250。

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 技术方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁