《中考数学第三轮专题复习:四边形综合练习.docx》由会员分享,可在线阅读,更多相关《中考数学第三轮专题复习:四边形综合练习.docx(8页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、中考数学第三轮压轴题专题复习:四边形综合过关练习1、如图,在正方形ABCD中,点E是BC的中点,连接DE,过点A作AGED交DE于点F,交CD于点G(1)证明:ADGDCE;(2)连接BF,证明:ABFB2、已知:如图,在ABCD中,E,F分别是边AD,BC上的点,且AE=CF,直线EF分别交BA的延长线、DC的延长线于点G,H,交BD于点0(1)求证:ABECDF;(2)连接DG,若DG=BG,则四边形BEDF是什幺特殊四边形?请说明理由3、如图,在ABCD中,点E是CD的中点,点F是BC边上的点,AFADFCABCD的面积为S,由A、E、F三点确定的圆的周长为l(1)若ABE的面积为30,
2、直按写出S的值;(2)求证:AE平分DAF;(3)若AEBE,AB4,AD5,求l的值4、(1)如图1,在正方形ABCD中,点E,F分别在BC,CD上,AEBF于点M,求证:AE=BF;(2)如图2,将 (1)中的正方形ABCD改为矩形ABCD,AB=2,BC=3,AEBF于点M,探究AE与BF的数量关系,并证明你的结论5、如图,1,将一张矩形纸片沿着对角线向上折叠,顶点落到点处,交于点.(1)求证:是等腰三角形;(2)如图2,过点作,交于点,连结交于点.判断四边形的形状,并说明理由;若,求的长.6、如图(1),菱形ABCD对角线AC、BD的交点O是四边形EFGH对角线FH的中点,四个顶点A、
3、B、C、D分别在四边形EFGH的边EF、FG、GH、HE上(1)求证:四边形EFGH是平行四边形;(2)如图(2)若四边形EFGH是矩形,当AC与FH重合时,已知,且菱形ABCD的面积是20,求矩形EFGH的长与宽7、如图,在菱形ABCD中,AB=2,BAD=60,过点D作DEAB于点E,DFBC于点F(1)如图1,连接AC分别交DE、DF于点M、N,求证:MN=AC;(2)如图2,将EDF以点D为旋转中心旋转,其两边DE、DF分别与直线AB、BC相交于点G、P,连接GP,当DGP的面积等于3时,求旋转角的大小并指明旋转方向8、已知正方形ABCD的对角线AC,BD相交于点O(1)如图1,E,G
4、分别是OB,OC上的点,CE与DG的延长线相交于点F若DFCE,求证:OE=OG;(2)如图2,H是BC上的点,过点H作EHBC,交线段OB于点E,连结DH交CE于点F,交OC于点G若OE=OG,求证:ODG=OCE;当AB=1时,求HC的长9、如图,AM是ABC的中线,D是线段AM上一点(不与点A重合)DEAB交AC于点F,CEAM,连结AE(1)如图1,当点D与M重合时,求证:四边形ABDE是平行四边形;(2)如图2,当点D不与M重合时,(1)中的结论还成立吗?请说明理由(3)如图3,延长BD交AC于点H,若BHAC,且BH=AM求CAM的度数;当FH=,DM=4时,求DH的长10、已知:
5、如图,在矩形ABCD中,Ab=6cm,BC=8cm,对角线AC,BD交于点0点P从点A出发,沿方向匀速运动,速度为1cm/s;同时,点Q从点D出发,沿DC方向匀速运动,速度为1cm/s;当一个点停止运动时,另一个点也停止运动连接PO并延长,交BC于点E,过点Q作QFAC,交BD于点F设运动时间为t(s)(0t6),解答下列问题:(1)当t为何值时,AOP是等腰三角形?(2)设五边形OECQF的面积为S(cm2),试确定S与t的函数关系式;(3)在运动过程中,是否存在某一时刻t,使S五边形S五边形OECQF:SACD=9:16?若存在,求出t的值;若不存在,请说明理由;(4)在运动过程中,是否存
6、在某一时刻t,使OD平分COP?若存在,求出t的值;若不存在,请说明理由11、我们定义:有一组邻角相等的凸四边形叫做“等邻角四边形”(1)概念理解:请你根据上述定义举一个等邻角四边形的例子;(2)问题探究;如图1,在等邻角四边形ABCD中,DAB=ABC,AD,BC的中垂线恰好交于AB边上一点P,连结AC,BD,试探究AC与BD的数量关系,并说明理由;(3)应用拓展;如图2,在RtABC与RtABD中,C=D=90,BC=BD=3,AB=5,将RtABD绕着点A顺时针旋转角(0BAC)得到RtABD(如图3),当凸四边形ADBC为等邻角四边形时,求出它的面积12、问题背景如图1,在正方形ABC
7、D的内部,作DAE=ABF=BCG=CDH,根据三角形全等的条件,易得DAEABFBCGCDH,从而得到四边形EFGH是正方形类比探究如图2,在正ABC的内部,作BAD=CBE=ACF,AD,BE,CF两两相交于D,E,F三点(D,E,F三点不重合)(1)ABD,BCE,CAF是否全等?如果是,请选择其中一对进行证明(2)DEF是否为正三角形?请说明理由(3)进一步探究发现,ABD的三边存在一定的等量关系,设BD=a,AD=b,AB=c,请探索a,b,c满足的等量关系13、已知正方形ABCD的边长为1,点P为正方形内一动点,若点M在AB上,且满足PBCPAM,延长BP交AD于N,连接CM.(1
8、)如图一,若点M在线段AB上,求证:APBN,AM=AN;(2)如图二,在点P运动过程中,满足PBCPAM,的点M在AB的延长线上时,APBN和AM=AN是否成立(不需说明理由)(3)是否存在满足条件的点P,使得PC=?请说明理由.14、正方形ABCD的边长为1,点O是BC边上的一个动点(与B,C不重合),以O为顶点在BC所在直线的上方作MON=90(1)当OM经过点A时,请直接填空:ON (可能,不可能)过D点;(图1仅供分析)如图2,在ON上截取OE=OA,过E点作EF垂直于直线BC,垂足为点F,作EHCD于H,求证:四边形EFCH为正方形(2)当OM不过点A时,设OM交边AB于G,且OG
9、=1在ON上存在点P,过P点作PK垂直于直线BC,垂足为点K,使得SPKO=4SOBG,连接GP,求四边形PKBG的最大面积15、我们给出如下定义:顺次连接任意一个四边形各边中点所得的四边形叫中点四边形(1)如图1,四边形ABCD中,点E,F,G,H分别为边AB,BC,CD,DA的中点求证:中点四边形EFGH是平行四边形;(2)如图2,点P是四边形ABCD内一点,且满足PA=PB,PC=PD,APB=CPD,点E,F,G,H分别为边AB,BC,CD,DA的中点,猜想中点四边形EFGH的形状,并证明你的猜想;(3)若改变(2)中的条件,使APB=CPD=90,其他条件不变,直接写出中点四边形EF
10、GH的形状(不必证明)16、已知正方形ABCD,P为射线AB上的一点,以BP为边作正方形BPEF,使点F在线段CB的延长线上,连接EA,EC(1)如图1,若点P在线段AB的延长线上,求证:EA=EC;(2)如图2,若点P在线段AB的中点,连接AC,判断ACE的形状,并说明理由;(3)如图3,若点P在线段AB上,连接AC,当EP平分AEC时,设AB=a,BP=b,求a:b及AEC的度数17、如图,在矩形ABCD中,AB=3,BC=4,将矩形ABCD绕点C按顺时针方向旋转角,得到矩形ABCD,BC与AD交于点E,AD的延长线与AD交于点F(1)如图,当=60时,连接DD,求DD和AF的长;(2)如图,当矩形ABCD的顶点A落在CD的延长线上时,求EF的长;(3)如图,当AE=EF时,连接AC,CF,求ACCF的值