二次函数图像和性质讲稿.ppt

上传人:石*** 文档编号:46593806 上传时间:2022-09-27 格式:PPT 页数:21 大小:2.01MB
返回 下载 相关 举报
二次函数图像和性质讲稿.ppt_第1页
第1页 / 共21页
二次函数图像和性质讲稿.ppt_第2页
第2页 / 共21页
点击查看更多>>
资源描述

《二次函数图像和性质讲稿.ppt》由会员分享,可在线阅读,更多相关《二次函数图像和性质讲稿.ppt(21页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、关于二次函数图像和性质第一页,讲稿共二十一页哦驶向胜利的彼岸学习目标学习目标w1 1、会用描点法画二次函数会用描点法画二次函数y=xy=x2 2和和y=-y=-x x2 2的图象;的图象;w2 2、根据、根据函数函数y=xy=x2 2和和y=-xy=-x2 2的图象,直的图象,直观地了解它的性质观地了解它的性质.第二页,讲稿共二十一页哦你想直观地了解它的性质吗你想直观地了解它的性质吗?数形结合,直观感受在二次函数在二次函数y=y=x x2 2中中,y,y随随x x的变化而变化的规律是什的变化而变化的规律是什么?么?观察观察y=y=x x2 2的表达式的表达式,选择适当选择适当x x值值,并计算

2、相应的并计算相应的y y值值,完成下表:完成下表:你会用描点法画二次函数y=y=x x2 2的图象吗的图象吗?xy=x x2 2x-3-2-10123y=x x2 2xy=x x2 29 94 41 10 01 14 49 9第三页,讲稿共二十一页哦xy0 0-4-3-2-11234108642-21描点描点,连线连线y=x2 2?第四页,讲稿共二十一页哦观察图象,回答问题串(1)(1)你能描述图象的形状吗你能描述图象的形状吗?与同伴进行交流与同伴进行交流.(2)图象是轴对称图形吗?如果是,它的对称轴是什么?请你找出几对对称点,并与同伴交流.(3)图象 与x轴有交点吗?如果有,交点坐标是什么?

3、(4)当x0呢?(5)当x取什么值时,y的值最小?最小值是什么?你是如何知道的?xy0 0-4-3-2-11234108642-21y=x2 2第五页,讲稿共二十一页哦这条抛物线关于这条抛物线关于y轴对称轴对称,y轴就轴就 是它的对称轴是它的对称轴.对称轴与抛物对称轴与抛物线的交点叫做线的交点叫做抛物线的顶点抛物线的顶点.二次函数二次函数y=x2的的图象形如物体抛射图象形如物体抛射时所经过的路线时所经过的路线,我我们把它叫做们把它叫做抛物线抛物线.第六页,讲稿共二十一页哦当当x0(在对称轴的在对称轴的右侧右侧)时时,y随着随着x的增大而的增大而增大增大.当当x=-2时,时,y=4当当x=-1时

4、,时,y=1当当x=1时,时,y=1当当x=2时,时,y=4抛物线抛物线y=x2在在x轴的轴的上方上方(除顶点外除顶点外),顶点顶点是它的最低点是它的最低点,开口开口向上向上,并且向上无限并且向上无限伸展伸展;当当x=0时时,函数函数y的值最小的值最小,最小值是最小值是0.第七页,讲稿共二十一页哦在学中做在做中学(1)二次函数二次函数y=-y=-x x2 2的图象是什么形状?的图象是什么形状?你能根据表格中的数据作出猜想吗?驶向胜利的彼岸(2)(2)先想一想,然后作出它的图象先想一想,然后作出它的图象(3)它与二次函数它与二次函数y=x2的图象有什么关系?的图象有什么关系?xy=-x x2 2

5、x-3-2-10123y=-x x2 2x-9-9-4-4-1-10 0-1-1-4-4-9-9第八页,讲稿共二十一页哦驶向胜利的彼岸xy0 0-4-3-2-11234-10-8-6-4-22-1描点描点,连线连线y=-=-x2 2?第九页,讲稿共二十一页哦驶向胜利的彼岸xy0 0-4-3-2-11234-10-8-6-4-22-1观察图象,回答问题串(1)1)你能描述图象的形状吗你能描述图象的形状吗?与同伴进行交流与同伴进行交流.(2)图象 与x轴有交点吗?如果有,交点坐标是什么?(3)当x0呢?(4)当x取什么值时,y的值最大?最大值是什么?你是如何知道的?(5)图象是轴对称图形吗?如果是

6、,它的对称轴是什么?请你找出几对对称点,并与同伴交流.y=-=-x2 2描点描点,连线连线第十页,讲稿共二十一页哦这条抛物线关于这条抛物线关于y轴对称轴对称,y轴就轴就 是它的对称轴是它的对称轴.对称轴与抛物对称轴与抛物线的交点叫做线的交点叫做抛物线的顶点抛物线的顶点.二次函数二次函数y=-x2的的图象形如物体抛射图象形如物体抛射时所经过的路线时所经过的路线,我我们把它叫做们把它叫做抛物线抛物线.y第十一页,讲稿共二十一页哦当当x0(在对称轴在对称轴的右侧的右侧)时时,y随着随着x的增大而减小的增大而减小.y 当当x=-2时时,y=-4 当当x=-1时时,y=-1当当x=1时时,y=-1当当x

7、=2时时,y=-4抛物线抛物线y=-x2在在x轴的轴的下方下方(除顶点外除顶点外),顶点顶点是它的最高点是它的最高点,开口开口向下向下,并且向下无限并且向下无限伸展伸展;当当x=0时时,函数函数y的值最大的值最大,最大值是最大值是0.第十二页,讲稿共二十一页哦看图说话看图说话函数函数y=ay=ax x2 2(a0)(a0)的图象和性质的图象和性质:做一做做一做P407y=x2y=-x2xy0yx0?它们之间有何关系?第十三页,讲稿共二十一页哦二次函数二次函数y=ax2的性质的性质.顶点坐标与对称轴顶点坐标与对称轴.位置与开口方向位置与开口方向.增减性与最值增减性与最值抛物线抛物线顶点坐标顶点坐

8、标对称轴对称轴位置位置开口方向开口方向增减性增减性最值最值y=x2y=-x2(0,0)(0,0)y轴轴y轴轴在在x轴的上方轴的上方(除顶点外除顶点外)在在x轴的下方轴的下方(除顶点外除顶点外)向上向上向下向下当当x=0时时,最小值为最小值为0.当当x=0时时,最大值为最大值为0.在对称轴的左侧在对称轴的左侧,y随着随着x的增大而减小的增大而减小.在在对称轴的右侧对称轴的右侧,y随着随着x的增大而增大的增大而增大.在对称轴的左侧在对称轴的左侧,y随着随着x的增大而增大的增大而增大.在对称在对称轴的右侧轴的右侧,y随着随着x的增大而减小的增大而减小.根据图形填表:根据图形填表:第十四页,讲稿共二十

9、一页哦y=xy=x2 2和和y=-xy=-x2 2是是y=axy=ax2 2当当a=1a=1时的特殊例子时的特殊例子.a.a的符号确定着抛物的符号确定着抛物线的线的驶向胜利的彼岸x0y函数函数y=axy=ax2 2(a0)(a0)的图象和性质的图象和性质:在同一坐标系中作出函数在同一坐标系中作出函数y=xy=x2 2和和y=-xy=-x2 2的图象的图象看图说话看图说话y=x2 2y=-=-x2 2第十五页,讲稿共二十一页哦1.抛物线抛物线y=ax2的顶点是原点的顶点是原点,对称轴是对称轴是y轴轴.2.当当a0时,抛物线时,抛物线y=ax2在在x轴的上方轴的上方(除顶点外除顶点外),它的开口向

10、上它的开口向上,并并且向上无限伸展;且向上无限伸展;当当a0时时,在对称轴的左侧在对称轴的左侧,y随着随着x的增大而减小;在对称轴右侧的增大而减小;在对称轴右侧,y随着随着x的增大而增大的增大而增大.当当x=0时函数时函数y的值最小的值最小.当当a0时,在对称轴的左侧时,在对称轴的左侧,y随着随着x的增大而增大;在对称轴的右侧的增大而增大;在对称轴的右侧,y随着随着x增大而减小增大而减小,当当x=0时时,函数函数y的值最大的值最大.二次函数二次函数y=axy=ax2 2的性质的性质第十六页,讲稿共二十一页哦我思,我进步1.已知抛物线已知抛物线y=ax2经过点经过点A(-2,-8).(1)求此抛

11、物线的函数解析式;)求此抛物线的函数解析式;(2)判断点)判断点B(-1,-4)是否在此抛物线上)是否在此抛物线上.(3)求出此抛物线上纵坐标为)求出此抛物线上纵坐标为-6的点的坐标的点的坐标.驶向胜利的彼岸?解(解(1)把()把(-2,-8)代入)代入y=ax2,得得 -8=a(-2)2,解得解得a=-2,所求函数解析式为所求函数解析式为y=-2x2.(2)因为)因为 ,所以点所以点B(-1,-4)不在此抛物线上不在此抛物线上.(3)由)由-6=-2x2,得得x2=3,所以纵坐标为所以纵坐标为-6的点有两个,它们分别是的点有两个,它们分别是 第十七页,讲稿共二十一页哦知道就做别客气2.2.填

12、空填空:(1)抛物线抛物线y=2x2的顶点坐标是的顶点坐标是 ,对称轴是对称轴是 ,在在 侧侧,y随着随着x的增大而增大;在的增大而增大;在 侧侧,y随着随着x的增大而减小的增大而减小,当当x=时时,函数函数y的值最小的值最小,最小值是最小值是 ,抛物线抛物线y=2x2在在x轴的轴的 方方(除顶点外除顶点外).(2)抛物线抛物线 在在x轴的轴的 方方(除顶点外除顶点外),在对称轴的在对称轴的左侧左侧,y随着随着x的的 ;在对称轴的右侧;在对称轴的右侧,y随着随着x的的 ,当当x=0时时,函数函数y的值最大的值最大,最大值是最大值是 ,当当x 0时时,y0时时,抛物线抛物线y=ax2在在x轴的上

13、方(除顶点外)轴的上方(除顶点外),它的开口向上它的开口向上,并且并且向上无限伸展;向上无限伸展;当当a0时时,在对称轴的左侧在对称轴的左侧,y随着随着x的增大而的增大而减小;减小;在对称轴右侧在对称轴右侧,y随着随着x的增大而增大的增大而增大.当当x=0时时函数函数y的值最小的值最小.当当a0时时,在对称轴的左侧在对称轴的左侧,y随着随着x的增大而增的增大而增大;大;在对称轴的右侧在对称轴的右侧,y随着随着x增大而减小增大而减小,当当x=0时时,函数函数y的值最大的值最大.小结 拓展1.抛物线抛物线y=ax2的顶点是原点的顶点是原点,对称轴是对称轴是y轴轴.驶向胜利的彼岸由二次函数y=y=x x2 2和和y=-y=-x x2 2知:第十九页,讲稿共二十一页哦作业独立独立作业作业1说说自己生活中遇到的哪些动物和植物身体的部分轮廓线呈抛物线形状.2设正方形的边长为,面积为,试作出S随a的变化而变化的图象.第二十页,讲稿共二十一页哦感谢大家观看第二十一页,讲稿共二十一页哦

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 大学资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁