《山东省滕州市第一中学东校高中数学3.3.2简单的线性规划问题1导学案无答案新人教A版必修5.doc》由会员分享,可在线阅读,更多相关《山东省滕州市第一中学东校高中数学3.3.2简单的线性规划问题1导学案无答案新人教A版必修5.doc(4页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、3.3.2 简单的线性规划问题(1)班级 姓名 学号 学习目标 1 巩固二元一次不等式和二元一次不等式组所表示的平面区域;2 能根据实际问题中的已知条件,找出约束条件. 学习过程 一、课前准备阅读课本至的探究找出目标函数,线性目标函数,线性规划,可行解,可行域的定义二、新课导学 学习探究在生活、生产中,经常会遇到资源利用、人力调配、生产安排的等问题,如:某工厂有A、B两种配件生产甲、乙两种产品,每生产一件甲产品使用4个A配件耗时1h,每生产一件乙产品使用4个B配件耗时2h,该厂每天最多可从配件厂获得16个A配件和12个B配件,按每天8h计算,该厂所有可能的日生产安排是什么?(1)用不等式组表示
2、问题中的限制条件:设甲、乙两种产品分别生产、件,由已知条件可得二元一次不等式组:(2)画出不等式组所表示的平面区域:注意:在平面区域内的必须是整数点(3)提出新问题:进一步,若生产一件甲产品获利2万元,生产一件乙产品获利3万元,采用哪种生产安排利润最大?(4)尝试解答:(5)获得结果:新知:线性规划的有关概念:线性约束条件:在上述问题中,不等式组是一组变量x、y的约束条件,这组约束条件都是关于x、y的一次不等式,故又称线性约束条件线性目标函数:关于x、y的一次式z=2x+y是欲达到最大值或最小值所涉及的变量x、y的解析式,叫线性目标函数线性规划问题:一般地,求线性目标函数在线性约束条件下的最大
3、值或最小值的问题,统称为线性规划问题可行解、可行域和最优解:满足线性约束条件的解叫可行解由所有可行解组成的集合叫做可行域使目标函数取得最大或最小值的可行解叫线性规划问题的最优解 典型例题 例1 在探究中若生产一件甲产品获利3万元,生产一件乙产品获利2万元,问如何安排生产才能获得最大利润? 动手试试练1. 求的最大值,其中、满足约束条件三、总结提升 学习小结用图解法解决简单的线性规划问题的基本步骤:(1)寻找线性约束条件,线性目标函数;(2)由二元一次不等式表示的平面区域做出可行域;(3)在可行域内求目标函数的最优解 学习评价 1. 目标函数,将其看成直线方程时,的意义是( ).A该直线的横截距
4、 B该直线的纵截距C该直线的纵截距的一半的相反数D该直线的纵截距的两倍的相反数2. 已知、满足约束条件,则的最小值为( ). A 6 B6 C10 D103. 在如图所示的可行域内,目标函数取得最小值的最优解有无数个,则的一个可能值是( ).C(4,2)A(1,1)B(5,1)OA. 3 B.3 C. 1 D.14. 有5辆6吨汽车和4辆5吨汽车,要运送最多的货物,完成这项运输任务的线性目标函数为 .5. 已知点(3,1)和(4,6)在直线的两侧,则的取值范围是 . 课后作业 1. 在中,A(3,1),B(1,1),C(1,3),写出区域所表示的二元一次不等式组.2. 求的最大值和最小值,其中、满足约束条件. 3