《辽宁省大连市理工大学附属高中数学 向量数量积的运算律学案 新人教B版必修4.doc》由会员分享,可在线阅读,更多相关《辽宁省大连市理工大学附属高中数学 向量数量积的运算律学案 新人教B版必修4.doc(2页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
232向量数量积的运算律一、学习要点:向量数量积的运算律及其简单运用二、学习过程:一.复习回顾:平面向量数量积的定义及其几何意义、性质:二.新课学习:1.平面向量数量积的运算律:(1) (2) (3) 注意: 向量的数量积是一种新的运算法则,以前所学的运算律、性质不适合1.实数a、b、c(b0),则ab=bc a=c. 但是ab = bc a = c 2.在实数中,有(ab)c = a(bc),但是(ab) c a(bc)2.常用数量积运算公式在数量积运算律中,有两个形似实数的完全平方和(差)公式及类似于实数平方差的公式在解题中的应用较为广泛.即:(1) (2) (3) 三例题:例1用向量方法证明:菱形对角线互相垂直.例2已知a、b都是单位向量,它们的夹角为,求.例3已知a、b都是非零向量,且a3b与7a5b垂直,a4b与7a2b垂直,求a与b的夹角.四.课堂练习:1. 教材练习题;五.课堂小结:通过本节学习,要求大家掌握平面向量数量积的运算规律,掌握两个向量共线、垂直的几何判断,能利用数量积的5个重要性质及运算律解决相关问题.六.作业:见作业(21)高考资源网()来源:高考资源网版权所有:高考资源网(www.k s 5 ) - 2 -