《安徽工业大学附属中学高中数学 1.集合和函数概念 函数的概念(二)教案 湘教版必修1.doc》由会员分享,可在线阅读,更多相关《安徽工业大学附属中学高中数学 1.集合和函数概念 函数的概念(二)教案 湘教版必修1.doc(2页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、课题:函数的概念(二)课 型:新授课教学目标:(1)会求一些简单函数的定义域与值域,并能用“区间”的符号表示;(2)掌握复合函数定义域的求法;(3)掌握判别两个函数是否相同的方法。教学重点:会求一些简单函数的定义域与值域。教学难点:复合函数定义域的求法。教学过程:一、复习准备:1. 提问:什么叫函数?其三要素是什么?函数y与y3x是不是同一个函数?为什么?2. 用区间表示函数yaxb(a0)、yaxbxc(a0)、y(k0)的定义域与值域。二、讲授新课:(一)函数定义域的求法: 函数的定义域通常由问题的实际背景确定,如果只给出解析式y=f(x),而没有指明它的定义域,那么函数的定义域就是指能使
2、这个式子有意义的实数的集合。例1:求下列函数的定义域(用区间表示) f(x)=; f(x)=; f(x)=;学生试求订正小结:定义域求法(分式、根式、组合式)说明:求定义域步骤:列不等式(组) 解不等式(组) *复合函数的定义域求法: (1)已知f(x)的定义域为(a,b),求f(g(x)的定义域;求法:由axb,知ag(x)b,解得的x的取值范围即是f(g(x)的定义域。 (2)已知f(g(x)的定义域为(a,b),求f(x)的定义域;求法:由axb,得g(x)的取值范围即是f(x)的定义域。例2已知f(x)的定义域为0,1,求f(x1)的定义域。例3已知f(x-1)的定义域为-1,0,求f(x+1)的定义域。巩固练习:1求下列函数定义域:(1); (2)2(1)已知函数f(x)的定义域为0,1,求的定义域; (2)已知函数f(2x-1)的定义域为0,1,求f(1-3x)的定义域。(二)函数相同的判别方法:函数是否相同,看定义域和对应法则。例5(课本P18例2)下列函数中哪个与函数y=x相等?(1); (2);(3); (4) 。(三)课堂练习: 1课本 P19练习1,3;2求函数yx4x1 ,x-1,3) 的值域。归纳小结:本堂课讲授了函数定义域的求法以及判断函数相等的方法。作业布置:习题1.2A组,第1,2; 课后记:- 2 -