天津市第一中学2015_2016学年高中数学第三章空间向量练习2理新人教A版选修2_1.doc

上传人:飞**** 文档编号:46405472 上传时间:2022-09-26 格式:DOC 页数:7 大小:673KB
返回 下载 相关 举报
天津市第一中学2015_2016学年高中数学第三章空间向量练习2理新人教A版选修2_1.doc_第1页
第1页 / 共7页
天津市第一中学2015_2016学年高中数学第三章空间向量练习2理新人教A版选修2_1.doc_第2页
第2页 / 共7页
点击查看更多>>
资源描述

《天津市第一中学2015_2016学年高中数学第三章空间向量练习2理新人教A版选修2_1.doc》由会员分享,可在线阅读,更多相关《天津市第一中学2015_2016学年高中数学第三章空间向量练习2理新人教A版选修2_1.doc(7页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、第三章 空间向量2一、空间向量 (A)1. 在底面是直角梯形的四棱锥PABCD中,侧棱PA底面ABCD,BCAD,ABC90,PAABBC2,AD1,则AD到平面PBC的距离为_2. 在正三棱柱ABCA1B1C1中,所有棱长均为1,则点B1到平面ABC1的距离为_3如图,四棱锥S-ABCD 的底面是正方形,每条侧棱的长都是地面边长的倍,P为侧棱SD上的点。 ()求证:ACSD;()若SD平面PAC,求二面角P-AC-D的大小()在()的条件下,侧棱SC上是否存在一点E,使得BE平面PAC。若存在,求SE:EC的值;若不存在,试说明理由。 解:();连,设交于于,由题意知.以O为坐标原点,分别为

2、轴、轴、轴正方向,建立坐标系如图。 设底面边长为,则高。 于是 故 从而 ()由题设知,平面的一个法向量,平面的一个法向量,设所求二面角为,则,所求二面角的大小为 ()在棱上存在一点使. 由()知是平面的一个法向量, 且 设 则 而 即当时,而不在平面内,故4如图,已知四棱锥,底面为菱形,平面,分别是的中点()证明:;()若为上的动点,与平面所成最大角的正切值为,求二面角的余弦值()证明:由四边形为菱形,可得为正三角形PBECDFA因为为的中点,所以又,因此因为平面,平面,所以而平面,平面且,所以平面又平面,所以()解:设,为上任意一点,连接由()知平面,PBECDFAHOS则为与平面所成的角

3、在中,所以当最短时,最大,即当时,最大此时,因此又,所以,所以PBECDFAyzx解法二:由()知两两垂直,以为坐标原点,建立如图所示的空间直角坐标系,又分别为的中点,所以,所以设平面的一法向量为,则因此取,则,因为,所以平面,故为平面的一法向量又,所以因为二面角为锐角,所以所求二面角的余弦值为二、空间向量在立体几何中的应用 (B) 1. 从点P引三条射线PA、PB、PC,每两条的夹角都是60,则二面角BPAC的余弦值是()A. B. C. D.2. 把正方形ABCD沿对角线AC折起成直二面角,点E、F分别是AD、BC的中点,O是正方形中心,则折起后,EOF的大小为()A45 B90 C120

4、 D603如图,在三棱柱中,是正方形的中心,平面,且()求异面直线AC与A1B1所成角的余弦值;()求二面角的正弦值;()设为棱的中点,点在平面内,且平面,求线段的长如图所示,建立空间直角坐标系,点B为坐标原点. 依题意得 (I)解:易得, 于是 所以异面直线AC与A1B1所成角的余弦值为 (II)解:易知 设平面AA1C1的法向量, 则即 不妨令可得, 同样地,设平面A1B1C1的法向量, 则即不妨令,可得于是从而所以二面角AA1C1B的正弦值为 (III)解:由N为棱B1C1的中点,得设M(a,b,0),则由平面A1B1C1,得即解得故因此,所以线段BM的长为4如图1,在RtABC中,C=90,BC=3,AC=6,D,E分别是AC,AB上的点,且DEBC,DE=2,将ADE沿DE折起到A1DE的位置,使A1CCD,如图2.(I)求证:A1C平面BCDE;(II)若M是A1D的中点,求CM与平面A1BE所成角的大小;(III)线段BC上是否存在点P,使平面A1DP与平面A1BE垂直?说明理由解:(1),平面,又平面,又,平面。(2)如图建系,则,,设平面法向量为则 又,与平面所成角的大小。(3)设线段上存在点,设点坐标为,则则,设平面法向量为,则 。假设平面与平面垂直,则,不存在线段上存在点,使平面与平面垂直。7

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 高考资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁