《孝感风电部件项目申请报告_模板范文.docx》由会员分享,可在线阅读,更多相关《孝感风电部件项目申请报告_模板范文.docx(123页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、泓域咨询/孝感风电部件项目申请报告目录第一章 总论7一、 项目名称及项目单位7二、 项目建设地点7三、 可行性研究范围7四、 编制依据和技术原则8五、 建设背景、规模9六、 项目建设进度10七、 环境影响10八、 建设投资估算11九、 项目主要技术经济指标11主要经济指标一览表12十、 主要结论及建议13第二章 项目建设背景及必要性分析14一、 碳纤维价格明显高于玻纤,需求有望保持较快增长14二、 疫情影响逐渐驱散,原材料价格压力趋缓17三、 风电主机成本结构中,叶片、齿轮箱、发电机是成本占比最高的三种零部件19四、 优化区域布局,推进区域协调发展20五、 项目实施的必要性24第三章 行业、市
2、场分析26一、 玻璃纤维增强复合材料目前仍是风电叶片的主要主梁材料26二、 叶片是风电最基础的关键零部件之一,是影响风力发电效率的关键因素之一27三、 拉挤成型工艺可以减少工序,相应减少模具的投入28第四章 建设内容与产品方案32一、 建设规模及主要建设内容32二、 产品规划方案及生产纲领32产品规划方案一览表32第五章 建筑技术方案说明34一、 项目工程设计总体要求34二、 建设方案34三、 建筑工程建设指标35建筑工程投资一览表35第六章 项目选址分析37一、 项目选址原则37二、 建设区基本情况37三、 坚持创新驱动发展,建设全省区域创新创业新高地40四、 加快构建现代产业体系,夯实市域
3、经济发展底盘42五、 项目选址综合评价44第七章 运营模式分析45一、 公司经营宗旨45二、 公司的目标、主要职责45三、 各部门职责及权限46四、 财务会计制度50第八章 法人治理53一、 股东权利及义务53二、 董事55三、 高级管理人员59四、 监事62第九章 发展规划分析63一、 公司发展规划63二、 保障措施64第十章 项目实施进度计划67一、 项目进度安排67项目实施进度计划一览表67二、 项目实施保障措施68第十一章 原辅材料成品管理69一、 项目建设期原辅材料供应情况69二、 项目运营期原辅材料供应及质量管理69第十二章 项目环保分析71一、 编制依据71二、 环境影响合理性分
4、析72三、 建设期大气环境影响分析73四、 建设期水环境影响分析74五、 建设期固体废弃物环境影响分析74六、 建设期声环境影响分析74七、 建设期生态环境影响分析75八、 清洁生产76九、 环境管理分析77十、 环境影响结论78十一、 环境影响建议78第十三章 项目投资分析80一、 投资估算的依据和说明80二、 建设投资估算81建设投资估算表83三、 建设期利息83建设期利息估算表83四、 流动资金84流动资金估算表85五、 总投资86总投资及构成一览表86六、 资金筹措与投资计划87项目投资计划与资金筹措一览表87第十四章 项目经济效益分析89一、 基本假设及基础参数选取89二、 经济评价
5、财务测算89营业收入、税金及附加和增值税估算表89综合总成本费用估算表91利润及利润分配表93三、 项目盈利能力分析93项目投资现金流量表95四、 财务生存能力分析96五、 偿债能力分析96借款还本付息计划表98六、 经济评价结论98第十五章 招标及投资方案99一、 项目招标依据99二、 项目招标范围99三、 招标要求100四、 招标组织方式102五、 招标信息发布104第十六章 项目总结分析105第十七章 附表107主要经济指标一览表107建设投资估算表108建设期利息估算表109固定资产投资估算表110流动资金估算表110总投资及构成一览表111项目投资计划与资金筹措一览表112营业收入、
6、税金及附加和增值税估算表113综合总成本费用估算表114固定资产折旧费估算表115无形资产和其他资产摊销估算表115利润及利润分配表116项目投资现金流量表117借款还本付息计划表118建筑工程投资一览表119项目实施进度计划一览表120主要设备购置一览表121能耗分析一览表121第一章 总论一、 项目名称及项目单位项目名称:孝感风电部件项目项目单位:xxx有限责任公司二、 项目建设地点本期项目选址位于xxx(待定),占地面积约73.00亩。项目拟定建设区域地理位置优越,交通便利,规划电力、给排水、通讯等公用设施条件完备,非常适宜本期项目建设。三、 可行性研究范围1、项目背景及市场预测分析;2
7、、建设规模的确定;3、建设场地及建设条件;4、工程设计方案;5、节能;6、环境保护、劳动安全、卫生与消防;7、组织机构与人力资源配置;8、项目招标方案;9、投资估算和资金筹措;10、财务分析。四、 编制依据和技术原则(一)编制依据1、中华人民共和国国民经济和社会发展第十四个五年规划和2035年远景目标纲要;2、中国制造2025;3、建设项目经济评价方法与参数及使用手册(第三版);4、项目公司提供的发展规划、有关资料及相关数据等。(二)技术原则本项目从节约资源、保护环境的角度出发,遵循创新、先进、可靠、实用、效益的指导方针。保证本项目技术先进、质量优良、保证进度、节省投资、提高效益,充分利用成熟
8、、先进经验,实现降低成本、提高经济效益的目标。1、力求全面、客观地反映实际情况,采用先进适用的技术,以经济效益为中心,节约资源,提高资源利用率,做好节能减排,在采用先进适用技术的同时,做好投资费用的控制。2、根据市场和所在地区的实际情况,合理制定产品方案及工艺路线,设计上充分体现设备的技术先进,操作安全稳妥,投资经济适度的原则。3、认真贯彻国家产业政策和企业节能设计规范,努力做到合理利用能源和节约能源。采用先进工艺和高效设备,加强计量管理,提高装置自动化控制水平。4、根据拟建区域的地理位置、地形、地势、气象、交通运输等条件及安全,保护环境、节约用地原则进行布置;同时遵循国家安全、消防等有关规范
9、。5、在环境保护、安全生产及消防等方面,本着“三同时”原则,设计上充分考虑装置在上述各方面投资,使得环境保护、安全生产及消防贯穿工程的全过程。做到以新代劳,统一治理,安全生产,文明管理。五、 建设背景、规模(一)项目背景我国风机大型化趋势加速,风机平均风轮直径同步增长。风机大型化方面,2011-2021年陆风新增装机平均单机容量CAGR达7.53%,2021年新增平均单机容量为3.1MW,具有明显加速趋势;2011-2021年海风新增装机平均单机容量CAGR为7.57%,2021年新增平均单机容量为5.6MW。同时,金风科技作为风电产品的龙头企业,风电产品销售大型化趋势明显加快。据金风科技一季
10、度业绩报告,公司3/4S及以上销售占比自2018年起逐年增加,至2021年占比达60.76%,2022年一季度3/4S产品销售占比为55.2%,同比提升145.2%。风机叶片方面,据中国可再生能源学会风能专业委员会(CWEA)统计,2010年,我国新增风电机组的平均风轮直径为78米,2020年达到136米。20102015年,我国新增风电机组平均风轮直径年均增长4.5米,20162020年则年均增长7.8米。目前,我国最长陆上风电叶片达到91米,相当于30层楼的高度;最长海上风电叶片为103米,接近于4个标准篮球场的长度。(二)建设规模及产品方案该项目总占地面积48667.00(折合约73.0
11、0亩),预计场区规划总建筑面积83101.00。其中:生产工程46415.42,仓储工程17426.24,行政办公及生活服务设施9166.54,公共工程10092.80。项目建成后,形成年产xxx套风电部件的生产能力。六、 项目建设进度结合该项目建设的实际工作情况,xxx有限责任公司将项目工程的建设周期确定为12个月,其工作内容包括:项目前期准备、工程勘察与设计、土建工程施工、设备采购、设备安装调试、试车投产等。七、 环境影响项目符合国家和地方产业政策,选址布局合理,拟采取的各项环境保护措施具有经济和技术可行性。建设单位在严格执行项目环境保护“三同时制度”、认真落实相应的环境保护防治措施后,项
12、目的各类污染物均能做到达标排放或者妥善处置,对外部环境影响较小,故项目建设具有环境可行性。八、 建设投资估算(一)项目总投资构成分析本期项目总投资包括建设投资、建设期利息和流动资金。根据谨慎财务估算,项目总投资35042.83万元,其中:建设投资27034.10万元,占项目总投资的77.15%;建设期利息393.48万元,占项目总投资的1.12%;流动资金7615.25万元,占项目总投资的21.73%。(二)建设投资构成本期项目建设投资27034.10万元,包括工程费用、工程建设其他费用和预备费,其中:工程费用22629.60万元,工程建设其他费用3655.31万元,预备费749.19万元。九
13、、 项目主要技术经济指标(一)财务效益分析根据谨慎财务测算,项目达产后每年营业收入74100.00万元,综合总成本费用59706.79万元,纳税总额6822.16万元,净利润10528.72万元,财务内部收益率22.70%,财务净现值16867.58万元,全部投资回收期5.48年。(二)主要数据及技术指标表主要经济指标一览表序号项目单位指标备注1占地面积48667.00约73.00亩1.1总建筑面积83101.001.2基底面积28713.531.3投资强度万元/亩345.952总投资万元35042.832.1建设投资万元27034.102.1.1工程费用万元22629.602.1.2其他费用
14、万元3655.312.1.3预备费万元749.192.2建设期利息万元393.482.3流动资金万元7615.253资金筹措万元35042.833.1自筹资金万元18982.463.2银行贷款万元16060.374营业收入万元74100.00正常运营年份5总成本费用万元59706.796利润总额万元14038.297净利润万元10528.728所得税万元3509.579增值税万元2957.6710税金及附加万元354.9211纳税总额万元6822.1612工业增加值万元22718.2613盈亏平衡点万元28670.00产值14回收期年5.4815内部收益率22.70%所得税后16财务净现值万元
15、16867.58所得税后十、 主要结论及建议综上所述,本项目能够充分利用现有设施,属于投资合理、见效快、回报高项目;拟建项目交通条件好;供电供水条件好,因而其建设条件有明显优势。项目符合国家产业发展的战略思想,有利于行业结构调整。第二章 项目建设背景及必要性分析一、 碳纤维价格明显高于玻纤,需求有望保持较快增长碳纤维织物的价格较高,是玻璃纤维的10倍以上,风电用大丝束碳纤维成本为12万元/吨(约1.8万美元/吨,其他可参考数据区间在1.4-1.8万美元/吨),制成织物成本则需18万元/吨,是玻纤织物价格的12倍。当前碳纤维主要用于叶片主梁,即替换原先主梁中的单轴向玻纤布(单轴向玻纤布占叶片成本
16、14%),替换后可有效减重20%,但成本上升82%。全球风电用碳纤维需求量有望保持较快增长。国内主流的碳纤维供应商在十四五期间开始提高碳纤维产能和批量化生产供应,并通过提升技术、改进设备和减少能耗来降低成本。从2020年开始,碳纤维产能大幅上升,且2021年较2020年在数量和增幅方面,有较大提升,2020年碳纤维产能从2019年的2.69万吨提升至3.62万吨,2021年产能增至6.34万吨,增幅高达75.14%。当前叶片上应用的碳纤维多选择48-50k的大丝束。随着海上风电市场的不断扩大,碳纤维的应用占比有望提升。对于海上大叶片来说,通常会在其承载的关键部位主梁上应用碳纤维以提高叶片刚度和
17、强度,以减少传递到主机和塔底的载荷,进而优化整机系统造价来降低度电成本。应用碳纤主梁设计的叶片一般比全玻纤叶片减重20%-30%,虽然碳纤叶片成本上升,但其带来的传动链上相关部件以及塔筒的优化减重,使得风电机组的整体成本降低10%以上。碳纤维成本:叶片材料、结构设计与生产工艺相互配合,使得碳纤维实现低成本应用,同时受益碳纤维国产化推进,碳纤维价格和风电应用成本有望降低。2015年以前用于风电领域的碳纤维主要采用预浸料或织物的真空导入工艺,部分采用小丝束碳纤维,成本较高,近年来主要采用大丝束碳纤维拉挤梁片,成本有效降低,根源在于VESTAS在大梁结构的革命性创新设计才使拉挤梁片的工艺成为可能。这
18、种设计理念把整体化成型的主梁主体受力部分拆分为高效低成本高质量的拉挤梁片标准件,然后把这些标准件一次组装整体成型,其优点为1)通过拉挤工艺生产方式大大提高了纤维体积含量,降低了主体承载部分的重量;2)通过标准件的生产方式大大提高了生产效率,保证产品性能的一致性和稳定性;3)大大降低了运输成本和最后组装整体成型的生产成本;4)预浸料和织物都有一定的边角废料,拉挤梁片及整体灌注极少。按这种设计和工艺制造的碳纤维主梁,兆瓦级的叶片均可使用。另外,国产碳纤维技术持续突破,有望提高风电领域的产业化应用比例,带动风电用碳纤维成本降低。目前叶片制造工艺中,实现纤维增强复合材料嵌入过程的工艺包括湿法手糊成型、
19、预浸料成型、真空导成型,但在风机市场扩大及风机大型化趋势下,湿法手糊成型、预浸料成型因环境污染、成本等问题较不适于大型叶片,目前主流工艺为真空灌注导入。碳纤维应用于叶片的设计和工艺壁垒:目前风电叶片的碳纤维用量中VESTAS占较大比重,主要是由于技术专利保护,2002年7月19日,VESTAS分别向中国、丹麦等国家知识产权局、欧洲专利局、世界知识产权局等国际性知识产权局申请了以碳纤维条带为主要材料的风力涡轮叶片的相关专利,专利权利要求包含了制造预先预制的条带的方法和制造风力涡轮机叶片的方法。专利保护期为20年。专利保护期期间,国内叶片制造商只能通过自主研发主梁设计结构和生产工艺规避VESTAS
20、的专利保护,一定程度上限制了碳纤维材料在国产风电叶片上的应用,随着VESTAS专利到期,国内碳纤维风电叶片产业化应用有望加快。风电叶片主梁所用碳纤维存在大克重预浸料、碳纤维织物真空导入、拉挤成型3种工艺,2015年之前全球碳纤维工艺以预浸料和真空灌注为主,而碳纤维价格高使风电叶片采用碳纤比例整体偏低;近年来Vestas大丝束碳纤维拉挤梁成为主流。拉挤工艺先将碳纤维制成拉挤板材,叶片制作时在设定位置内把拉挤板材黏贴在蒙皮上制成大梁。其设计理念是把整体化成型的主梁主体受力部分拆分为高效率、高质量、低成本的拉挤梁片标准件,然后把标准件一次组装整体成型。拉挤工艺碳纤维板材体积含量达69%,明显高于预浸
21、料和真空灌注,纤维含量高使拉挤法碳纤维高强高模轻质效果更好,能应用于刚度要求非常高、主梁疲劳富余量较大的叶片。二、 疫情影响逐渐驱散,原材料价格压力趋缓020年受疫情及供需影响,环氧树脂价格从原先1.6万-1.8万元/吨持续走高,2021年4月攀升至4万元/吨,疫情趋缓后价格逐渐回落至1.8万元/吨,在此过程中,叶片企业加快聚氨酯树脂替代;夹芯材料方面,巴沙木是理想的夹芯材料材,但作为天然材料且产地较为局限,生产供应产业链长,任何环节出问题都会影响供应。20192020年,同受风电“抢装”以及新冠肺炎疫情爆发的影响,巴沙木供应紧张,价格在2020年曾突破2万元/立方米,PET逐渐作为重要芯材替
22、代巴沙木。风电叶片上游主要可选原材料较多,通过各种材料之间的替代关系一定程度上缓解了通胀压力。为促进风电产业由政策驱动发展转为市场驱动,风电电价经历了标杆电价阶段、竞价阶段、指导电价阶段及目前的平价上网阶段。自2020年陆风国家退补以来,我国陆上风电逐步进入了平价阶段,海上风电平价也于2021年1月1日开启。随着风力发电平均上网电价和)*bEffi,或将倒逼风电整机厂商及上游零部件公司降本来维持利润空间。成本降低的最有效手段即不断扩大风电机组的单机容量,因此,平价时代机组大型化和零部件大尺寸化是未来风电发展的趋势。我国风机大型化趋势加速,风机平均风轮直径同步增长。风机大型化方面,2011-20
23、21年陆风新增装机平均单机容量CAGR达7.53%,2021年新增平均单机容量为3.1MW,具有明显加速趋势;2011-2021年海风新增装机平均单机容量CAGR为7.57%,2021年新增平均单机容量为5.6MW。同时,金风科技作为风电产品的龙头企业,风电产品销售大型化趋势明显加快。据金风科技一季度业绩报告,公司3/4S及以上销售占比自2018年起逐年增加,至2021年占比达60.76%,2022年一季度3/4S产品销售占比为55.2%,同比提升145.2%。风机叶片方面,据中国可再生能源学会风能专业委员会(CWEA)统计,2010年,我国新增风电机组的平均风轮直径为78米,2020年达到1
24、36米。20102015年,我国新增风电机组平均风轮直径年均增长4.5米,20162020年则年均增长7.8米。目前,我国最长陆上风电叶片达到91米,相当于30层楼的高度;最长海上风电叶片为103米,接近于4个标准篮球场的长度。在风机大型化趋势下,叶片的大型化是增强风电机组捕风能力以及降低风电项目成本的主要途径之一。根据理论发电量计算公式,风电机组产生的电能与叶片长度的平方成正比,增加叶片长度可以带来较为可观的发电量提升。而大容量机组搭配长叶片,能够减少同等装机规模项目所用的机组数量,相应降低机组及其施工安装等方面的投入。三、 风电主机成本结构中,叶片、齿轮箱、发电机是成本占比最高的三种零部件
25、以电气风电主机成本结构为例,2020年电气风电主机成本结构中叶片、齿轮箱、发电机占比分别为23.6%、12.7%和8.7%。由于叶片占主机的成本比重较高,叶片长度增加将一定程度上推高其自身以及整机的成本。在风机主机的大型化和低成本趋势下,叶片的技术迭代趋势将是更好的力学性能、轻量化和降本。风电叶片是风电产业链的关键组成部分,风电叶片产业链主要由上游原材料供应商,中游风电叶片生产商、下游整机厂商和风电场运营等环节构成。生产叶片的主要原材料包括玻纤、碳纤维和芯材等,国内代表企业有澳盛科技、光威复材、上纬新材、康达新材等。风电叶片制造企业可分为两类,一类是以迪皮埃(TPI)为代表的独立叶片生产企业,
26、中材科技和时代新材均属于此类企业;另一类是以艾尔姆(LM)为代表的风电整机厂配套生产企业。风机大型化趋势下,风电叶片的技术迭代趋势是力学性能优化、轻量化和降本,实现路径是风电叶片材料、制造工艺和叶片结构的迭代优化,其中最为重要的还是材料端的迭代。风电叶片长度将持续加长,叶片长度增加将一定程度上推高其自身以及整机的成本,同时叶片长度的增加还会导致叶片自重的上升,对叶片力学性能的要求也将持续强化。因此要让通过研制长叶片来提升发电量变得可行,就必须控制好叶片自重,并使之具有更高的强度、刚度等,以确保整机系统的高效率平稳运行。风电叶片成本结构中,主梁和芯材约占风电叶片原材料成本近80%。风电叶片的原材
27、料成本占总生产成本的75%,而原材料成本中占比较大的主要是增强纤维、树脂基体、芯材和结构胶,其中增强纤维和树脂为叶片主梁材料,组合构成纤维增强复合材料。风电叶片的原材料成本结构来看,增强纤维、树脂(基体材料)、芯材、结构胶、金属及配件和其他材料的成本占比分别为21%、33%、25%、8%、6%、7%,主梁材料和芯材占原材料成本达79%。材料优化是提升叶片性能、降低成本的主要路径。四、 优化区域布局,推进区域协调发展紧扣一体化和高质量发展要求,着力构建“主城崛起、两带协同、孝汉同城、多元支撑”的区域发展格局,全力打造武汉城市圈副中心。突出“主城崛起”。坚持市区一体,健全管理机制,完善服务功能,厚
28、植主导产业,扩大城市容量,提升城市形象,做大做强孝感主城区龙头,促进产、城、交通一体化,形成同城一体、融合发展的新格局。充分发挥三个发展主体的积极性,推动形成以孝南区、孝感国家高新区、市临空经济区为龙头的市域经济核心增长极,带动全市各地竞相发展。进一步解放思想、转变观念,打破体制壁垒,推动市本级和孝南区全方位融合共建共竞共享。优化功能布局,支持孝感国家高新区建设高新技术产业集聚区、军民融合示范区、产城融合引领区;支持孝南区打造中国卫生用品之都,建设国家循环经济示范区、华中绿色食品产业集聚区;支持市临空经济区建成孝汉“同城化”核心区、高端临空产业聚集区。加快城市扩容提质,坚持“东进、南拓、西联、
29、北延”,连通京珠高速、硚孝高速西延伸线、孝汉应高速、汉十高速,形成主城区高速外环线。加快东城新区、南城新区发展,推动老城区、东城新区、南城新区、临空经济区有机融合。加快提升城市美誉度,增强城市活力,深入开展国家卫生城市和文明城市创建,增强城市软实力,逐步形成功能完备、产城一体、生态宜居、形象美好的城市。强化“两带协同”。立足县域特色,优化产业布局,突出产业支撑,全力打造南部汉江经济制造业高质量发展带和北部大别山绿色产业高质量发展带。围绕打造以汉川、应城、云梦、安陆为主体的汉江经济制造业高质量发展带,支持汉川市建设武汉城市圈同城化发展先行区、汉江生态经济带绿色发展引领区、县域经济高质量发展示范区
30、、江汉平原乡村振兴示范区,省级开发区晋级国家队,巩固县域经济“百强”位置;支持应城市建设中部绿色化工产业集聚中心区、中部地区转型升级示范区、全国母婴护肤产业聚集区、全国温泉养生休闲旅游区,冲刺全省20强;支持云梦县云孝一体化发展,做强新型盐化工产业基地、建设循环经济示范区;支持安陆市建设孝感国家级农业科技园区安陆核心区、中部工业转型新高地、全国农业绿色发展先行区、国家全域旅游示范区。围绕打造大别山绿色产业高质量发展带,支持大悟县打造鄂北生态文化旅游中心、全省生态文明建设示范县、荆楚文旅名县,建设大别山革命老区经济强县;支持孝昌县打造华中地区景观苗木产业基地,建设大别山绿色发展示范县、全省可持续
31、发展实验区;支持市双峰山旅游度假区建设华中旅游重要节点、武汉城市圈休闲目的地、国家级旅游度假区。推进“孝汉同城”。抢抓武汉建设国家中心城市战略机遇,发挥“一主之域、一圈之城、同城之地”的地域优势和“汉孝一家亲”的人文优势,充分对接武汉城市圈同城化规划,制定孝汉同城化发展行动计划,建立完善协调推进机制,在城市功能互补、要素优化配置、产业分工协作、交通便捷顺畅、公共服务均衡、环境和谐宜居等方面,开展多层次、全方位合作共建。抢抓武汉城市圈大通道建设机遇,一体化规划制定和推动孝汉交通贯通,实现率先同城化,将孝感全域建成武汉市的新外延。研究制定税收共享政策,探索政府引导、企业参与、优势互补、园区共建、利
32、益共享的合作新模式,做好产业承接、企业配套、市场融入、技术引进、资本融通工作,形成总部在武汉、生产在孝感,研发在武汉、转化在孝感,股东在武汉、资本在孝感,市场在武汉、基地在孝感的高度融合发展格局。做大做强孝汉产业对接载体,加快孝感临空经济区与武汉临空港经开区、武汉自贸区的合作共建,用好中国光谷孝感产业园和武汉经济开发区孝感汽车及零部件产业园的两大“金字招牌”,积极融入武汉城市圈航空港经济综合实验区建设,支持汉川汉江经济长廊与武汉共同打造汉江大湾区,支持市临空经济区打造孝汉同城“桥头堡”,支持双峰山打造孝汉旅游融合排头兵。成“多元支撑”。坚持市域一盘棋,充分调动市、县、乡、村四级积极性,充分发挥
33、各个发展平台、各类市场主体、各种要素单元的能动性,打造不同层级、不同类型、不同动力的发展引擎,形成有为政府与有效市场、有质主体同频共振、同向发力的支撑体系。强化规划支撑,完善市域国土空间治理,开展全域土地质量调查,科学划定永久基本农田、城镇开发边界、生态保护红线,注重战略“留白”,预留发展弹性空间,逐步形成城市化发展区、农产品主产区、重点生态功能区三大空间格局。强化节点支撑,加快推进以人为核心的新型城镇化,以县级为重点加强城区、园区、景区建设,以乡镇(场、街)为重点,开展“功能镇区、和美乡村、实力产业”三项行动,推动人口集中、产业集聚、功能集成、要素集约,打造孝感更多高质量发展的重要节点。强化
34、要素支撑,加强土地、资金、人力资源等要素组织调度和协调保障,提高资源配置效率。强化平台支撑,充分发挥孝感国家高新区、市临空经济区、汉孝产业园、应城精细化工新材料产业基地、云梦盐化工循环产业园等平台作用,面向全市,服务市场主体、服务产业招商、服务创业创新,形成市域范围内平台共享、园区共建、项目共招的良好态势。强化动能支撑,激励各层面干部人才动力,激发各行业各领域活力,激活更多优质市场主体潜力,把各县(市、区)和市直“三区”打造成经济发展的“永动机”。五、 项目实施的必要性(一)现有产能已无法满足公司业务发展需求作为行业的领先企业,公司已建立良好的品牌形象和较高的市场知名度,产品销售形势良好,产销
35、率超过 100%。预计未来几年公司的销售规模仍将保持快速增长。随着业务发展,公司现有厂房、设备资源已不能满足不断增长的市场需求。公司通过优化生产流程、强化管理等手段,不断挖掘产能潜力,但仍难以从根本上缓解产能不足问题。通过本次项目的建设,公司将有效克服产能不足对公司发展的制约,为公司把握市场机遇奠定基础。(二)公司产品结构升级的需要随着制造业智能化、自动化产业升级,公司产品的性能也需要不断优化升级。公司只有以技术创新和市场开发为驱动,不断研发新产品,提升产品精密化程度,将产品质量水平提升到同类产品的领先水准,提高生产的灵活性和适应性,契合关键零部件国产化的需求,才能在与国外企业的竞争中获得优势
36、,保持公司在领域的国内领先地位。第三章 行业、市场分析一、 玻璃纤维增强复合材料目前仍是风电叶片的主要主梁材料玻璃纤维增强复合材料是指用玻璃纤维作为增强纤维材料,不饱和聚酯、环氧树脂与酚醛树脂作为基体材料,也称为玻璃钢,强度高、重量轻、耐老化,表面可再缠玻璃纤维及涂环氧树脂。玻璃纤维目前仍是主流增强材料,根据中国巨石公开披露,公司玻纤产品约有20%用于风电叶片。增强纤维的拉伸模量是影响叶片变形的关键因素之一(标准模量是指拉伸模量为230-265GPa,中等模量是指拉伸模量为270-315GPa,高模量是指拉伸模量超过315GPa),因此其模量的增加对叶片刚度的提升意义重大。近十年玻纤企业持续不
37、断的进行技术创新,每一代玻纤的模量都提升了10%左右,促进了叶片大型化的发展。玻璃纤维经过多年的大规模应用,工艺早已成熟。短期来看玻璃纤维仍将是主流材料,随着风机大型化趋势推进,叶片尺寸随之增加,其重量也越来越大,碳纤维增强复合材料占比有望提升。碳纤维的密度比玻璃纤维低30%-35%,应用碳纤维可使叶片减重20%以上;碳纤维的拉伸模量比玻璃纤维高3-8倍;碳纤维拥有更强的抗疲劳性能,能够延长叶片的使用寿命。碳纤维主要有3K、12K、24K、48K等规格,其中1-24K(含)为小丝束产品,主要在航空航天和军品上应用,而24K以上为大丝束产品,主要应用于风电叶片和民用产品。2020年国内碳纤维需求
38、量占比前二的领域依次是风电叶片、体育,分别占比40.9%、29.90%,其他领域的需求占比均不足10%。二、 叶片是风电最基础的关键零部件之一,是影响风力发电效率的关键因素之一为满足复杂工况下的高效率发电,风电叶片要求外型设计、密度轻、强度高、韧性强,除外形设计以外的力学性能要求都直接与风电叶片的结构和材料有关。风电叶片结构包括主梁系统、上下蒙皮、叶根增强层等:主梁系统包括主梁与腹板,主梁负责主要承载,提供叶片刚度即抗弯和抗扭能。腹板负责支撑截面结构,预制后粘接在主梁上;蒙皮形成叶片气动外形用于捕捉风能,通常在形成主梁结构后,上下蒙皮通过前、后缘与主梁结构粘接成为叶片;叶根增强层将主梁上载荷传
39、递到主机处。主梁和芯材是最核心部分,约占风电叶片原材料成本的80%。芯材用于提高叶片的稳定性。主梁材料主要是纤维增强复合材料,纤维增强复合材料是指纤维和基体材料的复合材料,纤维需要具有高模量,以提高叶片的刚度;树脂基体要求缺陷低、成型效率高。目前较小型叶片的复合材料中,纤维采用玻璃纤维,基体材料采用不饱和聚酯树脂,基于在力学性能要求不是太高情况下的成本最小化;较大型叶片的主梁复合材料,纤维采用碳纤维或碳纤维与玻璃纤维的混杂复合材料,基体材料较多采用环氧树脂。三、 拉挤成型工艺可以减少工序,相应减少模具的投入与灌注工艺相比,拉挤的树脂含量更低,可以使叶片重量下降3%左右。同时挤成型工艺与一般产品
40、的拉挤成型工艺相类似,但也存在不同之处。首先将规定数量的48K或24K碳纤维安装纱架上,并依次通过浸胶槽、预成型模、成型模具,后引入牵引机和收卷机。树脂基体材料在复合材料中起着粘结、支持、保护增强材料和传递载荷的作用,要求缺陷低、高效成型,同时成本占比高,成本也是重要考虑方面。风电叶片主要使用环氧灌注和手糊树脂。灌注树脂应用于叶片主要部件如腹板、主梁及壳体的真空灌注成型;手糊树脂在叶片制造中主要应用于叶片前后缘、腹板粘接区域补强及辅助件的粘接补强,主要成型工艺是手糊成型和手糊袋压工艺。基于行业对叶片提质增效的需求,不仅树脂对纤维织物要有更好的浸润性以提高灌注速度,也要根据升温曲线来减少固化时间
41、。树脂材料价格波动较大,近两年华东市场树脂材料环氧树脂价格波动范围在15000-40000元/吨。目前在树脂基体材料方面,环氧树脂是主流,2021年环氧树脂市场价格受疫情影响走高,2022年价格有所回落。环氧树脂产能:环氧树脂具有良好的力学性能、耐化学腐蚀性能和尺寸稳定性,是目前大型风电叶片的首选树脂。平均1GW风电装机对应至少4250吨环氧树脂。国内上市公司中,具有环氧树脂产品的公司有:中国石化、中化国际、上纬新材、宏昌电子。中国石化:2021年2月,通过对液体环氧树脂生产装置的升级改造,公司液体双酚A环氧树脂产能从2万吨/年提升到5万吨/年。中化国际:公司现有17万吨液体环氧树脂,同时该公
42、司于今年6月投产16万吨液体及2万吨固体环氧树脂。上纬新材:2019年公司在国内风电叶片专用环氧树脂市占率为13%,现有17.2万吨年风电树脂产能,该公司于今年6月新增风电树脂产能2万吨。宏昌电子:公司现有环氧树脂总产能15.5万吨/年,规划拟建设14万吨产能。聚氨酯材料:具有黏度低、灌注和固化速度快等特点,灌注时间比环氧树脂缩短一半,在80的环境条件下固化时间小于4小时,成本方面比环氧树脂低15%-20%,是近几年叶片应用关注度最高树脂材料。由于聚氨酯对水分非常敏感,所以叶片设计时不能使用轻木,叶片生产过程中增强纤维和夹芯材料的烘干以及灌注时对水的控制是聚氨酯批量应用的技术关键所在。DCPD
43、树脂:密度是环氧树脂的90%左右,成本比环氧树脂低了约30%,是叶片减重、降低成本和提高灌注效率的理想材料。由于DCPD存在黏度低灌注流速过快的问题,且缺乏成熟配套材料体系(如纤维、油漆等),因此需要进行配套材料体系开发、工艺实验和结构测试验证,才能保证在风电叶片上更好的推广应用。热塑性树脂:基于废旧叶片环保回收利用规划,可降解的热塑性树脂或将是未来叶片新材料发展方向。风电叶片基体材料多采用热固性树脂,如环氧树脂、不饱和聚酯树脂等,热固性树脂制成的风电叶片在其退役后材料很难被回收利用,与热固性复合材料相比,热塑性复合材料在满足密度小、强度高、抗冲击性好的前提下,兼具可循环使用、废料可回收、产品
44、可熔融再加工、可焊接等优点。碳纤维增强乙烯基树脂:碳纤维增强乙烯基树脂可降低成本,碳纤维价格昂贵,碳纤维加环氧树脂的叶片方案大幅增加成本,性价比高的乙烯基树脂来替代环氧树脂,可降低成本。乙烯基树脂的工艺性好,能满足机械力学性能、抗疲劳性、刚度等各项性能指标的设计要求。碳纤维增强乙烯基树脂有效降低成本,也有应用潜力。生物质材料:环保性好,目前市场上生物质材料以木质/竹制品为主,生物质风电叶片具有刚度高、稳定性好、低温阻尼好、材料可再生、成本低等优点。从工艺上看,相比碳纤维环氧树脂复合材料,竹材的用量高达50%-70%,环氧树脂用量少,避免了固化过程的过热反应,材料的收缩小;与玻璃纤维复合材料叶片
45、相比,则减少了加工时间。叶片主要由复合材料组成,其原材料费用占比高达75%。主要包括环氧树脂、玻纤、碳纤维、夹芯材料等,目前80-90米长的叶片玻璃纤维用量在25-40吨,在风机大型化轻量化背景下,碳纤维在原材料中占比有望继续提升。第四章 建设内容与产品方案一、 建设规模及主要建设内容(一)项目场地规模该项目总占地面积48667.00(折合约73.00亩),预计场区规划总建筑面积83101.00。(二)产能规模根据国内外市场需求和xxx有限责任公司建设能力分析,建设规模确定达产年产xxx套风电部件,预计年营业收入74100.00万元。二、 产品规划方案及生产纲领本期项目产品主要从国家及地方产业
46、发展政策、市场需求状况、资源供应情况、企业资金筹措能力、生产工艺技术水平的先进程度、项目经济效益及投资风险性等方面综合考虑确定。具体品种将根据市场需求状况进行必要的调整,各年生产纲领是根据人员及装备生产能力水平,并参考市场需求预测情况确定,同时,把产量和销量视为一致,本报告将按照初步产品方案进行测算。产品规划方案一览表序号产品(服务)名称单位单价(元)年设计产量产值1风电部件套xxx2风电部件套xxx3风电部件套xxx4.套5.套6.套合计xxx74100.00以电气风电主机成本结构为例,2020年电气风电主机成本结构中叶片、齿轮箱、发电机占比分别为23.6%、12.7%和8.7%。由于叶片占主机的成本比重较高,叶片长度增加将一定程度上推高其自身以及整机的成本。在风机主机的大型化和低成本趋势下,叶片的技术迭代趋势将是更好的力学性能、轻量化和降本。第五章 建筑技术方案说明一、 项目工程设计总体要求1、建筑结构设计力求贯彻“经济、实用和兼顾美观”的原则,根据工艺需要,结合当地地质条件及地需条件综合考虑。2、为满足工艺生产的需要,