《2022年必考点解析沪教版七年级数学第二学期第十四章三角形定向训练试卷(含答案详解).docx》由会员分享,可在线阅读,更多相关《2022年必考点解析沪教版七年级数学第二学期第十四章三角形定向训练试卷(含答案详解).docx(34页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、沪教版七年级数学第二学期第十四章三角形定向训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,和全等,且,对应若,则的长为( )A4B5C6D无法确定2、如果三角形一边上的中线等于这条边的一半,那么
2、这个三角形一定是( )A锐角三角形B直角三角形C钝角三角形D等腰三角形3、如图,等腰中,于D,点O是线段AD上一点,点P是BA延长线上一点,若,则下列结论:;是等边三角形;其中正确的是( )ABCD4、三角形的外角和是()A60B90C180D3605、下列所给的各组线段,能组成三角形的是:( )A2,11,13B5,12,7C5,5,11D5,12,136、如图,工人师傅在安装木制门框时,为防止变形,常常钉上两条斜拉的木条,这样做的数学依据是( )A两点确定一条直线B两点之间,线段最短C三角形具有稳定性D三角形的任意两边之和大于第三边7、根据下列已知条件,不能画出唯一的是( )A,B,C,D
3、,8、如图,是等边三角形,点在边上,则的度数为( )A25B60C90D1009、下列命题是真命题的是( )A等腰三角形的角平分线、中线、高线互相重合B一个三角形被截成两个三角形,每个三角形的内角和是90度C有两个角是60的三角形是等边三角形D在ABC中,则ABC为直角三角形10、在ABC中,A=50,B、C的平分线交于O点,则BOC等于( )A65B80C115D50第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,ACB90,ACBC,ADCD于点D,BECD于点E,有下面四个结论: CADBCE; ABEBAD; ABCD; CDADDE其中所有正确结论的序号
4、是_2、在ABC中,已知B是A的2倍,C比A大20,则A=_3、若一个立体图形从正面看和从左面看都是等腰三角形,从上面看是带有圆心的圆,则这个立体图形是_4、等腰三角形中,一条边长是2cm,另一条边长是3cm,这个等腰三角形的周长是_5、如图,一把直尺的一边缘经过直角三角形的直角顶点,交斜边于点;直尺的另一边缘分别交、于点、,若,则_度三、解答题(10小题,每小题5分,共计50分)1、如图,AD为ABC的角平分线(1)如图1,若BEAD于点E,交AC于点F,AB4,AC7则CF ;(2)如图2,CGAD于点G,连接BG,若ABG的面积是6,求ABC的面积;(3)如图3,若B2C,ABm,ACn
5、,则CD的长为 (用含m,n的式子表示)2、如图,在中,是角平分线,(1)求的度数;(2)若,求的度数3、如图,已知ABAC,ADAE,BD和CE相交于点O求证:OBOC4、已知:如图,点D为BC的中点,求证:是等腰三角形5、阅读以下材料,并按要求完成相应的任务:从正方形的一个顶点引出夹角为的两条射线,并连接它们与该顶点的两对边的交点构成的基本平面几何模型称为半角模型半角模型可证出多个几何结论,例如:如下图1,在正方形中,以为顶点的,、与、边分别交于、两点易证得大致证明思路:如图2,将绕点顺时针旋转,得到,由可得、三点共线,进而可证明,故任务:如图3,在四边形中,以为顶点的,、与、边分别交于、
6、两点请参照阅读材料中的解题方法,你认为结论是否依然成立,若成立,请写出证明过程;若不成立,请说明理由6、在中,点D是直线AC上一动点,连接BD并延长至点E,使过点E作于点F(1)如图1,当点D在线段AC上(点D不与点A和点C重合)时,此时DF与DC的数量关系是_(2)如图2,当点D在线段AC的延长线上时,依题意补全图形,并证明:(3)当点D在线段CA的延长线上时,直接用等式表示线段AD,AF,EF之间的数量关系是_7、针对于等腰三角形三线合一的这条性质,老师带领同学们做了进一步的猜想和证明,提问:如果一个三角形中,一个角的平分线和它所对的边的中线重合,那么这个三角形是等腰三角形已知:在ABC中
7、,AD 平分CAB,交BC 边于点 D,且CDBD,求证:ABAC以下是甲、乙两位同学的作法甲:根据角平分线和中线的性质分别能得出一组角等和一组边等,再加一组公共边,可证ACDABD,所以这个三角形为等腰三角形;乙:延长AD到E,使DEAD,连接BE,可证ACDEBD,依据已知条件可推出ABAC,所以这个三角形为等腰三角形(1)对于甲、乙两人的作法,下列判断正确的是( );A.两人都正确 B.甲正确,乙错误 C.甲错误,乙正确(2)选择一种你认为正确的作法,并证明8、如图1,点O是线段AD的中点,分别以AO和DO为边在线段AD的同侧作等边三角形OAB和等边三角形OCD,连接AC和BD,相交于点
8、E,连接BC(1)求证DOBAOC;(2)求CEB的大小;(3)如图2,OAB固定不动,保持OCD的形状和大小不变,将OCD绕点O旋转(OAB和OCD不能重叠),求CEB的大小9、如图,在中,点D在边AC上,且线段BD绕着点B按逆时针方向旋转120能与BE重合,点F是ED与AB的交点(1)求证:;(2)若,求的度数10、已知,AD,BC平分ABD,求证:ACDC-参考答案-一、单选题1、A【分析】全等三角形对应边相等,对应角相等,根据题中信息得出对应关系即可【详解】和全等,对应AB=DF=4故选:A【点睛】本题考查了全等三角形的概念及性质,应注意对应边、对应角是对两个三角形而言的,指两条边、两
9、个角的关系,而对边、对角是指同一个三角形的边和角的位置关系可以进一步推广到全等三角形对应边上的高相等,对应角的平分线相等,对应边上的中线相等,周长及面积相等全等三角形有传递性2、B【分析】根据题意画出图形,利用等腰三角形的性质及三角形内角和定理即可得到答案【详解】如图,在ABC中,CD是边AB上的中线AD=CD=BDA=DCA,B=DCBA+ACB+B=180 A+DCA+DCB+B=180即2A+2B=180A+B=90ACB=90ABC是直角三角形故选:B【点睛】本题考查了等腰三角形的性质及三角形内角和定理,熟练运用这两个知识是关键3、A【分析】利用等边对等角得:APOABO,DCODBO
10、,则APO+DCOABO+DBOABD,据此即可求解;因为点O是线段AD上一点,所以BO不一定是ABD的角平分线,可作判断;证明POC60且OPOC,即可证得OPC是等边三角形;证明OPACPE,则AOCE,得ACAE+CEAO+AP【详解】解:如图1,连接OB,ABAC,ADBC,BDCD,BADBAC12060,OBOC,ABC90BAD30OPOC,OBOCOP,APOABO,DCODBO,APO+DCOABO+DBOABD30,故正确;由知:APOABO,DCODBO,点O是线段AD上一点,ABO与DBO不一定相等,则APO与DCO不一定相等,故不正确;APC+DCP+PBC180,A
11、PC+DCP150,APO+DCO30,OPC+OCP120,POC180(OPC+OCP)60,OPOC,OPC是等边三角形,故正确;如图2,在AC上截取AEPA,PAE180BAC60,APE是等边三角形,PEAAPE60,PEPA,APO+OPE60,OPE+CPECPO60,APOCPE,OPCP,在OPA和CPE中,OPACPE(SAS),AOCE,ACAE+CEAO+AP,ABAO+AP,故正确;正确的结论有:,故选:A【点睛】本题主要考查了全等三角形的判定与性质、等腰三角形的判定与性质、等边三角形的判定与性质等知识,正确作出辅助线是解决问题的关键4、D【分析】根据三角形的内角和定
12、理、邻补角的性质即可得【详解】解:如图,又,即三角形的外角和是,故选:D【点睛】本题考查了三角形的内角和定理、邻补角的性质,熟练掌握三角形的内角和定理是解题关键5、D【分析】根据三角形三边关系定理,判断选择即可【详解】2+11=13,A不符合题意;5+7=12,B不符合题意;5+5=1011,C不符合题意;5+12=1713,D符合题意;故选D【点睛】本题考查了构成三角形的条件,熟练掌握三角形三边关系是解题的关键6、C【分析】根据三角形具有稳定性进行求解即可【详解】解:工人师傅在安装木制门框时,为防止变形,常常钉上两条斜拉的木条,这样做的数学依据是三角形具有稳定性,故选C【点睛】本题主要考查了
13、三角形的稳定性,熟知三角形具有稳定性是解题的关键7、B【分析】根据三角形存在的条件去判断【详解】,满足ASA的要求,可以画出唯一的三角形,A不符合题意;,A不是AB,BC的夹角,可以画出多个三角形,B符合题意;,满足SAS的要求,可以画出唯一的三角形,C不符合题意;,AB最大,可以画出唯一的三角形,D不符合题意;故选B【点睛】本题考查了三角形的存在性,熟练掌握三角形全等的判定方法是解题的关键8、D【分析】由等边三角形的性质及三角形外角定理即可求得结果【详解】是等边三角形C=60ADB=DBC+C=40+60=100故选:D【点睛】本题考查了等边三角形的性质、三角形外角的性质,掌握这两个性质是关
14、键9、C【分析】分别根据等腰三角形的性质、三角形的内角和定理、等边三角形的判定,直角三角形的判定即可判断【详解】A.等腰三角形中顶角角平分线、底边上的中线和底边上的高线互相重合,即三线合一,故此选项错误;B.三角形的内角和为180,故此选项错误;C.有两个角是60,则第三个角为,所以三角形是等边三角形,故此选项正确;D.设,则,故,解得,所以,此三角形不是直角三角形,故此选项错误故选:C【点睛】本题考查等腰三角形的性质,直角三角形的定义以及三角形内角和,掌握相关概念是解题的关键10、C【分析】根据题意画出图形,求出ABC+ACB =130,根据角平分线的定义得到CBD=ABC,ECB=ACB,
15、再根据三角形内角和定理和角的代换即可求解【详解】解:如图,A=50,ABC+ACB=180-A=130,BD、CE分别是ABC、ACB的平分线,CBD=ABC,ECB=ACB,BOC=180-CBD-ECB=180-(CBD+ECB)=180- (ABC+ACB)=180- 130=115故选:C【点睛】本题考查了三角形内角和定理,角平分线的定义,熟知三角形内角和定理,并能根据角平分线的定义进行角的代换是解题关键二、填空题1、【分析】由ACB=90,BECD,ADCD,得到ACD+BCE=90,ADC=CEB=90,则ACD+CAD=90,ADBE,即可判断,即可利用AAS证明CADBCE,即
16、可判断;则AD=CE,得到CD=CE+DE=AD+DE,即可判定;由ABACCD,得到ABCD,即可判断【详解】解:ACB=90,BECD,ADCD,ACD+BCE=90,ADC=CEB=90,ACD+CAD=90,ADBE,CAD=BCE,ABE=BAD,故正确;又AC=CB,CADBCE(AAS),故正确;AD=CE,CD=CE+DE=AD+DE,故正确,ABACCD,ABCD,故错误;故答案为:【点睛】本题主要考查了全等三角形的性质与判定,平行线的性质与判定,熟知相关知识是解题的关键2、40【分析】根据已知得出B=2A,C=A+20,代入A+B+C=180得出方程A+2A+A+20=18
17、0,求出即可【详解】解:B是A的2倍,C比A大20,B=2A,C=A+20,A+B+C=180,A+2A+A+20=180,A=40,故答案为:40【点睛】本题考查了三角形内角和定理的应用,注意:三角形的内角和等于180,用了方程思想3、圆锥【分析】根据立体图形视图、等腰三角形的性质分析,即可得到答案【详解】根据题意,这个立体图形是圆锥故答案为:圆锥【点睛】本题考查了等腰三角形、圆锥、立体图形视图的知识;解题的关键是熟练掌握立体图形视图的性质,从而完成求解4、或【分析】因为已知长度为和两边,没有明确是底边还是腰,所以有两种情况,需要分类讨论【详解】解:当为底时,其它两边都为,、可以构成三角形,
18、周长为;当为底时,其它两边都为,、可以构成三角形,周长为;故答案为:或【点睛】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,解题的关键是利用分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要5、20【分析】利用平行线的性质求出1,再利用三角形外角的性质求出DCB即可【详解】解:EFCD,1是DCB的外角,1-B=50-30=20,故答案为:20【点睛】本题考查了平行线的性质,三角形外角的性质等知识,解题的关键是熟练掌握基本知识三、解答题1、(1)3(2)12(3)【分析】(1)利用ASA证明AEFABE,得AE=AB=4,得出答案
19、;(2)延长CG、AB交于点H,设SBGC=SHGB=a,用两种方法表示ACH的面积即可;(3)在AC上取AN=AB,可得CD=DN=n-m,根据ABD和ACD的高相等,面积比等于底之比可求出CD的长(1)AD是ABC的平分线,BAD=CAD,BEAD,BEA=FEA,在AEF和AEB中, ,AEFAEB(ASA),AF=AB=4,AC=7 CF=AC-AF=7-4=3,故答案为:3;(2)延长CG、AB交于点H,如图,由(1)知AC=AH,点G为CH的中点,设SBGC=SHGB=a,根据ACH的面积可得:SABC+2a=2(6+a),SABC=12;(3)在AC上取AN=AB,如图,AD是A
20、BC的平分线,NAD=BAD,在ADN与ADB中,ADNADB(SAS),AND=B,DN=BD,B=2C,AND=2C,C=CDN,CN=DN=AC-AB=n-m,BD=DN=n-m,根据ABD和ACD的高相等,面积比等于底之比可得:,故答案为:【点睛】本题主要考查了全等三角形的判定与性质,角平分线的定义,三角形的面积等知识,利用角的轴对称性构造全等三角形是解题的关键2、(1);(2)【分析】(1)根据三角形内角和定理可求出,然后利用角平分线进行计算即可得;(2)根据垂直得出,然后根据三角形内角和定理即可得(1)解:,AD是角平分线,;(2),【点睛】题目主要考查三角形内角和定理,角平分线的
21、计算等,熟练运用三角形内角和定理是解题关键3、见解析【分析】根据SAS证明AEC与ADB全等,进而利用全等三角形的性质解答即可【详解】证明:在AEC与ADB中,AECADB(SAS),ACEABD,ABAC,ABCACB,OBCOCB,OBOC【点睛】本题考查了全等三角形的判定和性质,等腰三角形的性质,证明AECADB是本题的关键4、证明见解析【分析】过点D作,交AB于点M,过点D做,交AC于点N,根据角平分线性质,得;根据全等三角形的性质,通过证明,通过证明,得,结合等腰三角形的性质,即可完成证明【详解】如下图,过点D作,交AB于点M,过点D做,交AC于点N 直角和直角中 点D为BC的中点,
22、 直角和直角中 , ,即是等腰三角形【点睛】本题考查了角平分线、三角形中线、全等三角形、等腰三角形的知识;解题的关键是熟练掌握角平分线、三角形中线,全等三角形的性质,从而完成求解5、成立,证明见解析【分析】根据阅读材料将ADF旋转120再证全等即可求得EF= BE+DF 【详解】解:成立证明:将绕点顺时针旋转,得到,、三点共线,【点睛】本题考查旋转中的三角形全等,读懂材料并运用所学的全等知识是本题关键6、(1)(2)见解析(3)【分析】(1)利用边相等和角相等,直接证明,即可得到结论(2)利用边相等和角相等,直接证明,得到和,最后通过边与边之间的关系,即可证明结论成立(3)要证明,先利用边相等
23、和角相等,直接证明,得到和,最后通过边与边之间的关系,即可证明结论成立【详解】(1)解:,在和中, ,(2)解:当点D在线段AC的延长线上时,如下图所示:,在和中, ,(3)解:,如下图所示:,在和中, ,【点睛】本题主要是考查了三角形全等的判定和性质,熟练利用条件证明三角形全等,然后利用边相等以及边与边之间关系,即可证明结论成立,这是解决该题的关键7、(1)C ;(2)见解析【分析】(1)甲同学证明的两个三角形全等,没有边边角的判定,故错误,而乙的证明则正确,因此可作出判断;(2)按照乙的分析方法进行即可【详解】(1)甲同学证明的两个三角形全等,边边角不能判定两个三角形全等,故错误,而乙的证
24、明则正确,故选C;(2)依据题意,延长AD至E,使DEAD,连接BE,如图 D为BC中点 在CAD和BED中CADBED(SAS),AD平分BAC, ABACABC为等腰三角形【点睛】本题考查了全等三角形的判定与性质,等腰三角形的判定,关键是构造辅助线得到全等三角形8、(1)见详解;(2)120;(2)120【分析】(1)如图1,根据等边三角形的性质得到OD=OC=OA=OB,COD=AOB=60,则利用根据“SAS”判断AOCBOD;(2)利用AOCBOD得到CAO=DBO,然后根据三角形内角和可得到AEB=AOB=60,即可求出答案;(3)如图2,与(1)的方法一样可证明AOCBOD;则C
25、AO=DBO,然后根据三角形内角和可求出AEB=AOB=60,即可得到答案【详解】(1)证明:如图1,ODC和OAB都是等边三角形,OD=OC=OA=OB,COD=AOB=60,BOD=AOC=120,在AOC和BOD中AOCBOD;(2)解:AOCBOD,CAO=DBO,1=2,AEB=AOB=60,;(3)解:如图2,ODC和OAB都是等边三角形, OD=OC=OA=OB,COD=AOB=60,AOB+BOC=COD+BOC,即AOC=BOD,在AOC和BOD中AOCBOD;CAO=DBO,1=2,AEB=AOB=60,;即CEB的大小不变【点睛】本题考查了几何变换综合题:熟练掌握旋转的性
26、质、等边三角形的性质和全等三角形的判定与性质;利用类比的方法解决(3)小题9、(1)见解析;(2)【分析】(1)由旋转的性质可得,再证明,结合 从而可得结论;(2)由可得,再利用等腰三角形的性质求解,再利用三角形的内角和定理可得答案.【详解】证明:(1)线段BD绕着点B按逆时针方向旋转120能与BE重合,(SAS),(2)解:由(1)知 ,【点睛】本题考查的是全等三角形的判定与性质,旋转的性质,等腰三角形的性质,掌握“旋转前后的对应边相等,对应角相等”是解本题的关键.10、见解析【分析】证明BACBDC即可得出结论【详解】解:BC平分ABD,ABCDBC,在BAC和BDC中,BACBDC,ACDC【点睛】本题考查角平分线的意义及全等三角形的判定与性质,解题关键是掌握角平分线的性质及全等三角形的判定与性质