《2021-2022学年北师大版七年级数学下册第六章概率初步定向测试练习题(含详解).docx》由会员分享,可在线阅读,更多相关《2021-2022学年北师大版七年级数学下册第六章概率初步定向测试练习题(含详解).docx(17页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、北师大版七年级数学下册第六章概率初步定向测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列说法正确的是()A天气预报说“明天的降水概率为40%”,表示明天有40%的时间都在降雨B“篮球队员在罚球线上
2、投篮两次,都未投中”为不可能事件C“平分弦的直径必垂直于这条弦”是一个必然事件D“在一张纸上随意画两个直角三角形,这两个直角三角形相似”为随机事件2、下列说法正确的是( )A在同一年出生的400名学生中,至少有两人的生日是同一天B某种彩票中奖的概率是1%,买100张这种彩票一定会中奖C天气预报明天下雨的概率是50%,所以明天将有一半的时间在下雨D抛一枚图钉,钉尖着地和钉尖朝上的概率一样大3、以下事件为随机事件的是( )A通常加热到100时,水沸腾B篮球队员在罚球线上投篮一次,未投中C任意画一个三角形,其内角和是360D半径为2的圆的周长是4、袋中装有10个黑球、5个红球,1个白球,它们除颜色外
3、无差别,随机从袋子中摸出一球,则下列事件可能性最大的是( )A摸到黄球B摸到白球C摸到红球D摸到黑球5、从分别标有号数1到10的10张除标号外完全一样的卡片中,随意抽取一张,其号数为3的倍数的概率是( )ABCD6、已知粉笔盒里有8支红色粉笔和n支白色粉笔,每支粉笔除颜色外均相同,现从中任取一支粉笔,取出红色粉笔的概率是,则n的值是( )A10B12C13D147、书架上有本小说、本散文,从中随机抽取本恰好是小说的概率是( )ABCD8、下列事件为必然事件的是( )A打开电视,正在播放广告B抛掷一枚硬币,正面向上C挪一枚质地均匀的般子,向上一面的点数为7D实心铁块放入水中会下沉9、在一个不透明
4、的口袋中装有除颜色外其它都相同的5个红球和3个白球,第一次任意从口袋中摸出一个球来不放回,则第二次摸到白球的概率为( )ABCD10、下列事件是必然事件的是()A任意选择某电视频道,它正在播新闻联播B温州今年元旦当天的最高气温为15C在装有白色和黑色的袋中摸球,摸出红球D不在同一直线上的三点确定一个圆第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、一般地,当试验的可能结果有很多且各种可能结果发生的可能性相等时,则用列举法,利用概率公式_的方式得出概率当试验的所有可能结果不是有限个,或各种可能结果发生的可能性不相等时,常常是通过_来估计概率,即在同样条件下,大量重复试验所
5、得到的随机事件发生的频率的稳定值来估计这个事件发生的_2、在一个不透明的袋中装有除颜色外其余均相同的5个红球和3个黄球,如果从中随机摸出一个,那么摸到黄球的可能性大小是_ 3、一个不透明的布袋内装有除颜色外,其余完全相同的2个红球,1个白球,1个黑球,搅匀后,从中随机摸出1个球,则摸到一个红球的概率为_4、投掷一枚质地均匀的正方体骰子,当骰子停止后,朝上一面的点数是“5”的概率是_5、不透明的袋子里装有除颜色外完全相同的m个白色乒乓球和15个黄色乒乓球,若随机的从袋子中摸出一个乒乓球是白色的概率为,则袋子中总共有_个乒乓球三、解答题(5小题,每小题10分,共计50分)1、为了提高哈尔滨返乡农民
6、工再就业能力,劳动和社会保障部门对部分返乡农民工进行了某项专业技能培训,为了解培训的效果,培训结束后随机抽取了部分参调人员进行技能测试,测试结果分成“不合格”、“合格”、“良好”、“优秀”四个等级,并绘制了如图所示的统计图,且不合格率为,请根据统计图提供的信息,回答下列问题:(1)从参加测试的人员中随机抽取一人进行技能展示,其测试结果为“优秀”的概率为多少?(2)若返乡农民工中有2000名参加培训,获得“良好”和“优秀”的总人数大约是多少名?2、每年的4月23日为“世界读书日”,某学校为了培养学生的阅读习惯,计划开展以“书香润泽心灵,阅读丰富人生”为主题的读书节活动,在“形象大使”选拔活动中,
7、A,B,C,D,E这5位同学表现最为优秀,学校现打算从5位同学中任选2人作为学校本次读书节活动的“形象大使”,请你用列表或画树状图的方法,求恰好选中A和C的概率3、为了更好地宣传“开车不喝酒,喝酒不开车”的驾车理念,某市一家报社做了如下的调查问卷单选在随机调查了本市全部万名中的部分司机后,整理相关数据并制作了如下两个不完整的统计图“开车不喝酒,喝酒不开车”调查问卷表克服酒驾你认为哪种方式最好A.司机酒驾,乘客有责,让乘客帮助监督B在车上张贴“请勿喝酒”的提醒标志C.签订“永不酒驾”保证书D.希望交警加大检查力度E查出酒驾,追究就餐饭店的连带责任 根据以上信息,解答下列问题:(1)请补全条形统计
8、图,并直接写出扇形统计图中 _ ;(2)该市支持选项B的司机大约有多少人?(3)如果要从该市支持选项B的司机中随机抽取名,给他们发放“请勿酒驾”的提醒标志,那么支持选项B的司机小李被抽中的概率是多少?4、一个密码锁的密码由四个数字组成,每个数字都是09这十个数字中的一个,只有当四个数字与所设定的密码相同时,才能将锁打开粗心的小明忘了中间的两个数字,他一次就能打开该锁的概率是多少?5、口袋里有除颜色外其它都相同的6个红球和4个白球(1)先从袋子里取出m()个白球,再从袋子里随机摸出一个球,将“摸出红球”记为事件A如果事件A是必然事件,请直接写出m的值如果事件A是随机事件,请直接写出m的值(2)先
9、从袋子中取出m个白球,再放入m个一样的红球并摇匀,摸出一个球是红球的可能性大小是,求m的值-参考答案-一、单选题1、D【分析】直接利用概率的意义以及随机事件的概念分别分析判断得出答案【详解】解:A.天气预报说“明天的降水概率为40%”,表示明天有40%的可能性都在降雨,此选项错误;B.“篮球队员在罚球线上投篮两次,都未投中”为随机事件,此选项错误;C.“平分弦的直径必垂直于这条弦”是一个随机事件,此选项错误;D.“在一张纸上随意画两个直角三角形,这两个直角三角形相似”为随机事件,此选项正确故选:D【点睛】此题主要考查了概率的意义以及随机事件的定义,正确把握相关定义是解题关键2、A【分析】由题意
10、根据概率的意义、随机事件的意义逐项进行分析判断即可【详解】解:A. 在同一年出生的400名学生中,至少有两人的生日是同一天,因为一年最多有366天,故本选项正确;B. 某种彩票中奖的概率是1%,买100张这种彩票一定会中奖错误,故本选项错误;C. 天气预报明天下雨的概率是50%,所以明天将有一半的时间在下雨错误,故本选项错误;D. 抛一枚图钉,钉尖着地和钉尖朝上的概率一样大错误,故本选项错误;故选:A【点睛】本题考查随机事件、概率的意义,熟练掌握随机事件和概率的意义是正确判断的前提3、B【分析】根据事件发生的可能性大小判断相应事件的类型即可【详解】解:A通常加热到100时,水沸腾是必然事件;B
11、篮球队员在罚球线上投篮一次,未投中是随机事件;C任意画一个三角形,其内角和是360是不可能事件;D半径为2的圆的周长是是必然事件;故选:B【点睛】考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念必然事件指在一定条件下一定发生的事件不可能事件是指在一定条件下,一定不发生的事件不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件4、D【分析】个数最多的就是可能性最大的【详解】解:因为黑球最多,所以被摸到的可能性最大故选:D【点睛】本题主要考查可能性大小的比较:只要总情况数目相同,谁包含的情况数目多,谁的可能性就大;反之也成立;若包含的情况相当,那么它们的可能性就
12、相等5、C【分析】用3的倍数的个数除以数的总数即为所求的概率【详解】解:1到10的数字中是3的倍数的有3,6,9共3个,卡片上的数字是3的倍数的概率是故选:C【点睛】本题考查概率的求法用到的知识点为:概率所求情况数与总情况数之比6、B【分析】根据概率求解公式列方程计算即可;【详解】由题意得:,解得:n12经检验:n12是方程的解故选B【点睛】本题主要考查了概率公式的应用,准确计算是解题的关键7、D【分析】概率=所求情况数与总情况数之比,再分析可得:总的情况数有5种,而随机抽取刚好是小说的情况数有3种,利用概率公式可得答案.【详解】解:书架上有本小说、本散文,共有本书,从中随机抽取本恰好是小说的
13、概率是;故选:D【点睛】本题考查的是简单随机事件的概率,掌握“概率公式求解简单随机事件的概率”是解本题的关键.8、D【分析】根据必然事件的定义:在一定条件下,一定会发生的事件,进行逐一判断即可【详解】解:A、打开电视,可以正在播放广告,也可以不在播放广告,不是必然事件,不符合题意;B、抛掷一枚硬币,正面可以向上,反面也可以向上,不是必然事件,不符合题意;C、挪一枚质地均匀的般子,向上一面的点数为7,这是不可能发生的,不是必然事件,不符合题意;D、实心铁块放入水中会下沉,这是一定会发生的,是必然事件,符合题意;故选D【点睛】本题主要考查必然事件,熟知必然事件的定义是解题的关键9、B【分析】画树状
14、图,表示出等可能的结果,再由概率公式求解即可【详解】依题意画树状图如下:故第二次摸到白球的概率为故选B【点睛】本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率10、D【分析】由题意依据必然事件指在一定条件下一定发生的事件逐项进行判断即可.【详解】解:A. 任意选择某电视频道,它正在播新闻联播,是随机事件,选项不符合;B. 温州今年元旦当天的最高气温为15,是随机事件,选项不符合;C. 在装有白色和黑色的袋中摸球,摸出红球,是不可能事件,选项不符合;D. 不在同一直线上的三点确定一个圆,是必然事
15、件,选项符合.故选:D.【点睛】本题考查确定事件和不确定事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念必然事件指在一定条件下一定发生的事件不可能事件是指在一定条件下,一定不发生的事件不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件二、填空题1、P(A) 统计频率 概率 【详解】略2、【分析】从袋中随机摸出一个球共有8种等可能的结果,其中摸到黄球有3种结果,再利用概率公式即可得【详解】解:由题意,从袋中随机摸出一个球共有种等可能的结果,其中摸到黄球有3种结果,则如果从中随机摸出一个,那么摸到黄球的可能性大小是,故答案为:【点睛】本题考查了简单事件的概率计算,熟练掌
16、握概率公式是解题关键3、【分析】结合题意,根据概率公式的性质计算,即可得到答案【详解】2个红球,1个白球,1个黑球中随机摸出1个球,则摸到一个红球的概率为: 故答案为:【点睛】本题考查了概率的知识;解题的关键是熟练掌握利用概率公式计算概率的性质,从而完成求解4、【分析】根据概率的计算公式计算【详解】一枚质地均匀的正方体骰子有6种等可能性,朝上一面的点数是“5”的概率是,故答案为:【点睛】本题考查了概率的计算,熟练掌握概率的计算公式是解题的关键5、18【分析】由从袋子中摸出一个乒乓球是白球的概率计算出从袋子中摸出一个乒乓球是黄色的概率,再根据白球的个数以及从袋子中摸出一个乒乓球是白球的概率即可求
17、出乒乓球的总个数【详解】解:从袋子中摸出一个乒乓球是白色的概率为,从袋子中摸出一个乒乓球是黄色的概率为,袋子中乒乓球的总数为:(个),故答案为:18【点睛】本题主要考查由概率求数量,解题关键是熟练掌握概率公式以及公式的变形三、解答题1、(1);(2)1300名【分析】(1)先计算出本次测试的总人数,求出优秀人数,再利用公式计算即可;(2)用总人数40乘以“良好”和“优秀”的比例即可【详解】解:(1)本次测试的总人数为(人),优秀的人数为,测试结果为“优秀”的概率为;(2),答:获得“良好”和“优秀”的总人数大约是1300名【点睛】此题考查条形统计图,能读懂统计图,会利用部分求总人数,求部分的概
18、率,利用部分的比例求出总体中该部分的数量,掌握各计算公式是解题的关键2、【分析】画树状图展示所有等可能的结果数,找出恰好选中甲和乙的结果数,然后根据概率公式求解【详解】解:画树状图为:共有20种等可能的结果数,其中恰好选中A和C的结果数有2种,所以恰好选中甲和乙的概率是【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率3、(1)见解析,12;(2)13500人;(3)【分析】(1)由选择方式B的有81人,占总数的27%,即可求得总人数,利用总人数减去其它各组的人数即可求得选择方式D的人数
19、,作出直方图,然后根据百分比的意义求得m的值;(2)利用总人数50000乘以对应的百分比即可求得;(3)利用概率公式即可求解【详解】解:(1)调查的总人数是:人,则选择方式的人数人,补全条形统计图如下:故答案为:;(2)该市支持选项B的司机共有人,答:该市支持选项B的司机大约有人(3)该市支持选项B的司机共有人,则支持该选项的司机小李被抽中的概率答:支持选项B的司机小李被抽中的概率是【点睛】此题考查了条形统计图,扇形统计图,用样本估计总体以及概率等知识,解题的关键是正确分析条形统计图,扇形统计图中的数据4、【分析】计算出数字的总共组合有几种,其中只有一种能打开,利用概率公式进行求解即可【详解】
20、因为密码由四个数字组成,如个位和千位上的数字已经确定,假设十位上的数字是0,则百位上的数字即有可能是09中的一个,要试10次,同样,假设十位上的数字是1,则百位上的数字即有可能是09中的一个,也要试10次,依此类推,要打开该锁需要试100次,而其中只有一次可以打开,所以一次就能打开该锁的概率是【点睛】本题考查了简单概率公式的计算,熟悉概率公式是解题的关键,如果一个事件有种可能,而且这些事件的可能性相同,其中事件出现种结果,那么事件A的概率5、(1)4;1或2或3;(2)【分析】(1)根据题意得:当先从袋子里取出所有的白球,再从袋子里随机摸出一个球,一定为红球,即可求解; 根据题意得:当袋子里有
21、白球时,再从袋子里随机摸出一个球,可能为白球,也可能为红球,可得此时有白球 1个或2个或3个,即可求解;(2)根据题意得:所有可能发生的结果个数为10,且每种结果发生的可能性都相同;摸出红球的结果个数为 再根据概率公式,即可求解【详解】解:(1)根据题意得:当先从袋子里取出所有的白球,再从袋子里随机摸出一个球,一定为红球, ; 根据题意得:当袋子里有白球时,再从袋子里随机摸出一个球,可能为白球,也可能为红球, 此时有白球 1个或2个或3个,即m的值为1或2或3;(2)所有可能发生的结果个数为10,且每种结果发生的可能性都相同;摸出红球的结果个数为根据题意得:,【点睛】本题主要考查了必然事件和随机事件定义,求概率,熟练掌握必然事件指在一定条件下一定发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件,概率公式是解题的关键