2022年最新京改版九年级数学下册第二十三章-图形的变换专项练习试题(无超纲).docx

上传人:可**** 文档编号:46219611 上传时间:2022-09-25 格式:DOCX 页数:22 大小:1.03MB
返回 下载 相关 举报
2022年最新京改版九年级数学下册第二十三章-图形的变换专项练习试题(无超纲).docx_第1页
第1页 / 共22页
2022年最新京改版九年级数学下册第二十三章-图形的变换专项练习试题(无超纲).docx_第2页
第2页 / 共22页
点击查看更多>>
资源描述

《2022年最新京改版九年级数学下册第二十三章-图形的变换专项练习试题(无超纲).docx》由会员分享,可在线阅读,更多相关《2022年最新京改版九年级数学下册第二十三章-图形的变换专项练习试题(无超纲).docx(22页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、九年级数学下册第二十三章 图形的变换专项练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列四个图形中既是中心对称图形又是轴对称图形的是( )ABCD2、在平面直角坐标系中,点A(m,2)与点B(3,

2、n)关于y轴对称,则( )Am=3,n=2Bm=,n=2Cm=2,n=3Dm=,n=3、如图,是由ABO平移得到的,点A的坐标为(-1,2),它的对应点的坐标为(3,4),ABO内任意点P(a,b)平移后的对应点的坐标为( )A(a,b)B(-a,-b)C(a+2,b+4)D(a+4,b+2)4、在平面直角坐标系中,已知点A(-4,3)与点B关于y轴对称,则点B的坐标为( )A(-4,-3)B(4,3)C(4,-3)D(-4,3)5、下列图形中,是中心对称图形的是( )ABCD6、如图,以点O为位似中心,将DEF放大后得到ABC,已知OD=1,OA=3若DEF的面积为S,则ABC的面积为( )

3、A2SB3SC4SD9S7、在平面直角坐标系中,点P(2,5)关于y轴对称的点的坐标为()A(2,5)B(2,5)C(2,5)D(5,2)8、小明将图案绕某点连续旋转若干次,每次旋转相同角度,设计出一个外轮廓为正六边形的图案(如图),则可以为( )A30B60C90D1209、如图下面图形既是轴对称图形,又是中心对称图形的是()ABCD10、下列图形中,是中心对称图形的是( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,中,D,E分别为AC,AB边上的点,将沿DE翻折,点A恰好与点B重合,若,则_2、已知点与关于原点对称,则xy的值是_3、点A关于轴的

4、对称点坐标是,则点关于轴的对称点坐标是_.4、在平面直角坐标系中,点关于原点的对称点坐标为_5、已知正方形ABCD中,AB2,A是以A为圆心,1为半径的圆,若A绕点B顺时针旋转,旋转角为(0180),则当旋转后的圆与正方形ABCD的边相切时,_三、解答题(5小题,每小题10分,共计50分)1、如图,在RtABC中,ACB=90,BAC=30,将线段CA绕点C逆时针旋转60,得到线段CD,连接AD,BD(1)依题意补全图形;(2)若BC=1,求线段BD的长2、如图,在平面直角坐标系中,ABC的三个顶点的坐标分别为A(2,1),B(0,1),C(0,4)(1)画出ABC关于x轴对称的A1B1C1,

5、A、B、C的对应点分别为A1,B1,C1;(2)画出ABC绕原点O逆时针方向旋转90得到的A2B2C2,A、B、C的对应点分别为A2,B2,C2连接B2C2,并直接写出线段B2C2的长度3、如图,在平面直角坐标系中,网格的每个小方格都是边长为1个单位长度的正方形,四边形ABCD的顶点均落在格点上(1)在图中画出四边形ABCD关于x轴对称的四边形A1B1C1D1;(2)在(1)的条件下,分别写出点A、D的对应点A1、D1的坐标4、如图,在ABC中,AC=BC,ACB=90,点D是边AB上的动点,连接CD,点B关于直线CD的对称点为点E,射线AE与射线CD交于点F(1)在图中,依题意补全图形;(2

6、)记DCB=(45),求BAF的大小;(用含的式子表示)(3)若BCE是等边三角形,猜想EF和AB的数量关系,并证明你的结论5、如图,在中,点D在边AC上,且线段BD绕着点B按逆时针方向旋转120能与BE重合,点F是ED与AB的交点(1)求证:;(2)若,求的度数-参考答案-一、单选题1、D【分析】根据轴对称图形与中心对称图形的概念,并结合选项中图形的特点即可选择【详解】解:A、是轴对称图形,不是中心对称图形,故该选项不符合题意;B、不是轴对称图形,是中心对称图形,故该选项不符合题意;C、是轴对称图形,不是中心对称图形,故该选项不符合题意;D、是轴对称图形,是中心对称图形,故该选项符合题意故选

7、:D【点睛】本题考查了中心对称图形与轴对称图形的概念轴对称图形的关键是寻找对称轴,图形沿对称轴折叠后可重合;中心对称图形关键是要寻找对称中心,图形旋转180后与原图重合2、B【分析】由题意直接根据关于y轴对称点的性质求出m和n的值,从而得解.【详解】解:点A(m,2)与点B(3,n)关于y轴对称,纵坐标相同,横坐标互为相反数m=-3,n=2故答案为:B【点睛】本题主要考查关于y轴对称点的性质,正确掌握横纵坐标的符号关系是解题的关键3、D【分析】根据点A的坐标和点的坐标确定平移规律,即可求出点P(a,b)平移后的对应点的坐标【详解】解:ABO是由ABO平移得到的,点A的坐标为(-1,2),它的对

8、应点A的坐标为(3,4),ABO平移的规律是:先向右移4个单位长度,再向上平移2个单位长度,ABO内任意点P(a,b)平移后的对应点P的坐标为(a+4,b+2)故选:D【点睛】此题考查了平面直角坐标系中点的平移规律,解题的关键是熟练掌握平面直角坐标系中点的平移规律点向左平移,点的横坐标减小,纵坐标不变;向右平移,点的横坐标增大,纵坐标不变;点向上平移,点的横坐标不变,纵坐标增大;向下平移,点的横坐标不变,纵坐标减小4、B【分析】利用y轴对称的点的坐标特征:横坐标互为相反数,纵坐标相等,即可求出点B的坐标【详解】解: A(-4,3) ,关于y轴对称点B的坐标为(4,3)故答案为:B【点睛】本题主

9、要是考查了y轴对称的点的坐标特征,熟练掌握关于不同坐标轴对称的点的坐标特征,是解决此类问题的关键5、C【分析】根据中心对称图形的概念:一个平面图形绕某一点旋转180,如果旋转后的图形能够和原图形重合,那么这个图形叫做中心对称图形,这个点就是对称中心. 根据中心对称图形的概念对各选项进行一一分析判定即可求解【详解】A、不是中心对称图形,不符合题意;B、不是中心对称图形,不符合题意;C、是中心对称图形,符合题意;D、不是中心对称图形,不符合题意故选:C【点睛】本题考查了中心对称图形,掌握好中心对称图形,中心对称图形是要寻找对称中心,旋转180度后能够与原来的图形重合6、D【分析】首先由OD=1,O

10、A=3,求出DEF和ABC的位似比为1:3,进而得到相似比为1:3,即可根据相似三角形面积比等于相似比的平方求出ABC的面积【详解】解:OD=1,OA=3,DEF和ABC的位似比为1:3,DEF和ABC的相似比为1:3,即,ABC的面积为故选:D【点睛】此题考查了位似三角形的性质,相似三角形的性质,解题的关键是熟练掌握位似三角形的性质位似三角形的位似比等于相似比相似三角形性质:相似三角形对应边成比例,对应角相等相似三角形的相似比等于周长比,相似三角形的相似比等于对应高的比,对应角平分线的比以及对应中线的比,相似三角形的面积比等于相似比的平方7、C【分析】关于轴对称的两个点的坐标特点:横坐标互为

11、相反数,纵坐标不变,根据原理直接可得答案.【详解】解:点P(2,5)关于y轴对称的点的坐标为: 故选:C【点睛】本题考查的是关于轴对称的两个点的坐标特点,掌握“关于轴对称的两个点的坐标特点:横坐标互为相反数,纵坐标不变”是解本题的关键.8、B【分析】由题意依据每次旋转相同角度,旋转了六次,且旋转了六次刚好旋转了一周为360进行分析即可得出答案.【详解】解:因为每次旋转相同角度,旋转了六次,且旋转了六次刚好旋转了一周为360,所以每次旋转相同角度 .故选:B.【点睛】本题考查旋转的性质,解题的关键是能够找到旋转中心,从而确定旋转角的度数9、B【详解】解:A、是轴对称图形,但不是中心对称图形,故本

12、选项不符合题意;B、既是轴对称图形,又是中心对称图形,故本选项符合题意;C、是中心对称图形,但不是轴对称图形,故本选项不符合题意;D、是轴对称图形,但不是中心对称图形,故本选项不符合题意;故选:B【点睛】本题主要考查了轴对称图形和中心对称图形的定义,熟练掌握如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形;在平面内,把一个图形绕着某个点旋转180,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形是解题的关键10、A【详解】解:A、是中心对称图形,故本选项符合题意;B、是轴对称图形,不是中心对称图形,故本选项不符合题意;C、是轴对称图形,不是中心对称图形,故

13、本选项不符合题意;D、是轴对称图形,不是中心对称图形,故本选项不符合题意;【点睛】本题主要考查了中心对称图形的定义,熟练掌握在平面内,把一个图形绕着某个点旋转180,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形是解题的关键二、填空题1、故答案为1: 【点睛】本题考查锐角三角函数,勾股定理,折叠性质,三角形全等判定与性质,矩形判定与性质,三角形相似判定与性质,线段的比,掌握锐角三角函数,勾股定理,折叠性质,三角形全等判定与性质,矩形判定与性质,三角形相似判定与性质,线段的比是解题关键46【分析】由翻折的性质可得:ABD=A=30,AED=BED=90,从而可证BD平分ABC,

14、由角平分线的性质即可得到DE=CD=3,则AD=2DE=6【详解】解:由翻折的性质可得:ABD=A=30,AED=BED=90,C=90,A=30,ABC=60,CBD=30,ABD=CBD,BD平分ABC,又DEB=C=90,DE=CD=3,AD=2DE=6,故答案为:6【点睛】本题主要考查了折叠的性质,角平分线的性质,含30度角的直角三角形的性质,熟知相关知识是解题的关键2、【分析】直接利用关于原点对称点的性质得出x,y的值进而得出答案【详解】解:点与关于原点对称, 解得:,则xy的值是:-3故答案为:-3【点睛】此题主要考查了关于原点对称点的性质,正确得出的值是解题关键3、(2,1)【分

15、析】根据关于坐标轴对称的点的特征,先求得的坐标,进而求得的坐标【详解】解:点A关于轴的对称点坐标是,点坐标是点关于轴的对称点坐标是故答案为:【点睛】本题考查了关于坐标轴对称的点的坐标特征,掌握关于坐标轴对称的点的坐标特征是解题的关键关于x轴对称的两个点,横坐标相等,纵坐标互为相反数;关于y轴对称的两个点,纵坐标相等,横坐标互为相反数4、(-4,7)【分析】根据两个点关于原点对称时,它们的坐标符号相反,即点P(x,y)关于原点O的对称点是P(-x,-y),进而得出答案【详解】解:点关于原点的对称点坐标为(-4,7),故答案是:(-4,7)【点睛】此题主要考查了原点对称点的性质,正确掌握横纵坐标的

16、符号关系是解题关键5、30,60或120【分析】根据题意得,可分三种情况讨论:当旋转后的圆A与正方形ABCD的边AB相切时,与边CD也相切;当旋转后的圆与正方形ABCD的边AD相切时,与边BC也相切;当旋转后的圆 与正方形ABCD的边BC相切时,即可求解【详解】正方形ABCD中AB=2,圆A是以A为圆心,1为半径的圆,当圆A绕点B顺时针旋转(0180)过程中,圆A与正方形ABCD的边相切时,可分三种情况讨论:如图1,当旋转后的圆A与正方形ABCD的边AB相切时,与边CD也相切,设圆 与正方形ABCD的边AB相切于点E,连接E,B,则在RtEB中,E=1,B=2, ,BE=30,即=30;如图2

17、,当旋转后的圆与正方形ABCD的边AD相切时,与边BC也相切,设圆与正方形ABCD的边BC相切于点F,连接F,B,则 ,在 中, ,BF=30,=BA=ABC-BF =60;如图3,当旋转后的圆 与正方形ABCD的边BC相切时, 设切点为G,连接 ,则 ,在 中, ,BG=30,=BA=ABC+BG=120综上,旋转角=30,60或120故答案为:30,60或120【点睛】本题主要考查了切线的性质,图形的旋转,解直角三角形,熟练掌握相关知识点,并利用分类讨论的思想解答是解题的关键三、解答题1、(1)见解析;(2)【分析】(1)根据线段旋转的方法,得出,然后连接AD,BD即可得;(2)根据角的直

18、角三角形的性质和勾股定理可得,由旋转的性质可得是等边三角形,再利用勾股定理求解即可【详解】解:(1)根据线段旋转方法,如图所示即为所求; (2) , , , 线段CA绕点C逆时针旋转60得到线段CD,且,是等边三角形, , , 在中,【点睛】题目主要考查旋转图形的作法及性质,勾股定理,角的直角三角形的性质,等边三角形的性质等,理解题意,作出图形,综合运用各个定理性质是解题关键2、(1)作图见解析;(2)作图见解析,【分析】(1)关于轴对称,即对应点横坐标不变,纵坐标互为相反数,找出坐标即可;(2)根据旋转的性质可画出图形,即可找出的坐标,由即可得出答案【详解】(1)关于轴对称的如图所作,,,;

19、(2)绕原点逆时针方向旋转得到的如图所示,由旋转的性质得:【点睛】本题考查轴对称与旋转作图,掌握轴对称的性质以及旋转的性质是解题的关键3、(1)见解析;(2)A1(3,5)、D1(3,4)【分析】(1)分别作出四个顶点关于x轴的对称点,再首尾顺次连接即可;(2)根据所作图形可得答案【详解】解:(1)如图所示,四边形A1B1C1D1即为所求(2)A1(3,5)、D1(3,4)【点睛】本题主要考查作图轴对称变换,解题的关键是掌握轴对称变换的定义与性质4、(1)见解析;(2);(3),证明见解析【分析】(1)根据轴对称即可得出结论;(2)先判断出,再表示出BAF,即可得出结论;(3)先判断出是直角三

20、角形,结合是等边三角形,即可得出结论【详解】解:(1)如图所示;(2)连接由题意可知,即(3),证明:是等边三角形,由(2)可知点B关于直线CF的对称点为点E,是直角三角形,且【点睛】此题是几何变换综合题,主要考查了轴对称的性质,直角三角形的判定和性质,等边三角形的判定和性质,判断出BCF是直角三角形是解本题的关键5、(1)见解析;(2)【分析】(1)由旋转的性质可得,再证明,结合 从而可得结论;(2)由可得,再利用等腰三角形的性质求解,再利用三角形的内角和定理可得答案.【详解】证明:(1)线段BD绕着点B按逆时针方向旋转120能与BE重合,(SAS),(2)解:由(1)知 ,【点睛】本题考查的是全等三角形的判定与性质,旋转的性质,等腰三角形的性质,掌握“旋转前后的对应边相等,对应角相等”是解本题的关键.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁