2022年最新强化训练北师大版八年级数学下册第三章图形的平移与旋转章节测评试题(含解析).docx

上传人:可**** 文档编号:46204815 上传时间:2022-09-25 格式:DOCX 页数:20 大小:916.78KB
返回 下载 相关 举报
2022年最新强化训练北师大版八年级数学下册第三章图形的平移与旋转章节测评试题(含解析).docx_第1页
第1页 / 共20页
2022年最新强化训练北师大版八年级数学下册第三章图形的平移与旋转章节测评试题(含解析).docx_第2页
第2页 / 共20页
点击查看更多>>
资源描述

《2022年最新强化训练北师大版八年级数学下册第三章图形的平移与旋转章节测评试题(含解析).docx》由会员分享,可在线阅读,更多相关《2022年最新强化训练北师大版八年级数学下册第三章图形的平移与旋转章节测评试题(含解析).docx(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、八年级数学下册第三章图形的平移与旋转章节测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列图案中既是轴对称图形又是中心对称图形的是( )ABCD2、已知点关于原点的对称点在一次函数的图象上,则实数的

2、值为( )A1B-1C-2D23、下列图形中,是中心对称图形的是( )ABCD4、如图,点A、B、C、D都在方格纸的格点上,若AOB绕点O按逆时针方向旋转到COD的位置,则旋转的角度为( )A30B45C90D1355、如图,ABC中,C=84,CBA=56,将ABC挠点B旋转到DBE,使得DE/AB,则EBC的度数为( )A28B40C42D506、如图下面图形既是轴对称图形,又是中心对称图形的是()ABCD7、随着2022年北京冬奥会日渐临近,我国冰雪运动发展进入快车道,取得了长足进步在此之前,北京冬奥组委曾面向全球征集2022年冬奥会会徵和冬残奥会会徽设计方案,共收到设计方案4506件,

3、以下是部分参选作品,其中既是轴对称图形又是中心对称图形的是( )ABCD8、如图,将OAB绕点O逆时针旋转80得到OCD,若A的度数为110,D的度数为40,则AOD的度数是( )A50B60C40D309、下列图形中,既是中心对称图形又是轴对称图形的有几个()A1个B2个C3个D4个10、下列图形中,既是轴对称图形,又是中心对称图形的是( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,P是正方形ABCD内一点,将绕点B顺时针方向旋转,能与重合,若,则_2、如图,三角形和三角形是等边三角形,三角形绕点顺时针旋转后得三角形,为45度,则_度3、在平面直角

4、坐标系中,已知点A(a,3)与点B(2,b)关于原点对称,则ba_4、如图所示,ABC经过平移得到ABC,图中_与_大小形状不变,线段AB与AB的位置关系是_,线段C C与B B的位置关系是_5、若点P(m1,5)与点Q(3,n)关于原点成中心对称,则mn的值是_三、解答题(5小题,每小题10分,共计50分)1、(1)如图所示,图中的两个三角形关于某点对称,请找出它们的对称中心O(2)如图所示,已知ABC的三个顶点的坐标分别为A(4,1),B(1,1),C(3,2)将ABC绕原点O旋转180得到A1B1C1,请画出A1B1C1,并写出点A1的坐标2、如图,在平面直角坐标系中,三角形ABC的顶点

5、坐标分别是A(-4,-1),B(1,1),C(-1,4),点P(x1,y1)是三角形ABC内一点,点P(x1,y1)平移到点P1(x1+3,y1-1)时;(1)画出平移后的新三角形A1B1C1并分别写出点A1B1C1的坐标;(2)求出三角形A1B1C1的面积3、如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,ABC的顶点均在格点上,点C的坐标为(0, -1), (1)写出A、B两点的坐标;(2)画出ABC关于y轴对称的A1B1C1 ; (3)画出ABC绕点C旋转180后得到的A2B2C24、如图1,ABC,AED是等腰直角三角形,EAD=90,点B在线段AE上,点

6、C在线段AD上(1)请直接写出线段BE与线段CD的数量关系为_;(2)如图2,将图1中的ABC绕点A顺时针旋转角(090),则(1)中的结论是否仍成立?若成立,请利用图2证明;若不成立,请说明理由5、如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立如图所示的平面直角坐标系后,的顶点均在格点上,且坐标分别为:A(3,3)、B(1,1)、C(4,1)依据所给信息,解决下列问题:(1)请你画出将向右平移3个单位后得到对应的;(2)再请你画出将沿x轴翻折后得到的;(3)若连接、,请你直接写出四边形的面积-参考答案-一、单选题1、B【详解】A.是轴对称图形,不是中心对称图形,故不符合题意;B

7、. 既是轴对称图形,又是中心对称图形,故符合题意;C.是轴对称图形,不是中心对称图形,故不符合题意;D.既不是轴对称图形,也不是中心对称图形,故不符合题意;故选B【点睛】本题考查了轴对称图形和中心对称图形的识别,熟练掌握轴对称图形和中心对称图形的定义是解答本题的关键在平面内,一个图形经过中心对称能与原来的图形重合,这个图形叫做叫做中心对称图形;一个图形的一部分,以某条直线为对称轴,经过轴对称能与图形的另一部分重合,这样的图形叫做轴对称图形2、B【分析】求出点关于原点的对称点的坐标,代入函数解析式中求解即可【详解】解:点关于原点的对称点的坐标为(-2,3),代入得,解得,故选:B【点睛】本题考查

8、了关于原点对称的点的坐标特征和待定系数法,解题关键是求出对称点的坐标,熟练运用待定系数法求值3、A【详解】解:A、是中心对称图形,故本选项符合题意;B、是轴对称图形,不是中心对称图形,故本选项不符合题意;C、是轴对称图形,不是中心对称图形,故本选项不符合题意;D、是轴对称图形,不是中心对称图形,故本选项不符合题意;【点睛】本题主要考查了中心对称图形的定义,熟练掌握在平面内,把一个图形绕着某个点旋转180,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形是解题的关键4、C【分析】根据旋转的性质,对应边的夹角BOD即为旋转角【详解】解:AOB绕点O按逆时针方向旋转到COD的位置,对

9、应边OB、OD的夹角BOD即为旋转角,旋转的角度为90故选:C【点睛】本题考查了旋转的性质,熟记性质以及旋转角的确定是解题的关键5、B【分析】先求出A=40,再根据旋转和平行得出DBA=40,进而可求EBC的度数【详解】解:ABC中,C=84,CBA=56,A=180-C -CBA=40,由旋转可知,D=A=40,EBC=DBA,DE/AB,D=DBA=40,EBC=DBA=40,故选:B【点睛】本题考查了旋转的性质和平行线的性质,解题关键是熟记旋转的性质,准确识图,正确进行推导计算6、B【详解】解:A、是轴对称图形,但不是中心对称图形,故本选项不符合题意;B、既是轴对称图形,又是中心对称图形

10、,故本选项符合题意;C、是中心对称图形,但不是轴对称图形,故本选项不符合题意;D、是轴对称图形,但不是中心对称图形,故本选项不符合题意;故选:B【点睛】本题主要考查了轴对称图形和中心对称图形的定义,熟练掌握如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形;在平面内,把一个图形绕着某个点旋转180,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形是解题的关键7、C【分析】根据轴对称图形与中心对称图形的概念求解【详解】A是轴对称图形,不是中心对称图形,故此选项不合题意;B不是轴对称图形,是中心对称图形,故此选项不符合题意;C是轴对称图形,也是中心对称图形,故此

11、选项合题意;D不是轴对称图形,也不是中心对称图形,故此选项不合题意故选:C【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合8、A【分析】根据旋转的性质求解再利用三角形的内角和定理求解再利用角的和差关系可得答案.【详解】解: 将OAB绕点O逆时针旋转80得到OCD, A的度数为110,D的度数为40, 故选A【点睛】本题考查的是三角形的内角和定理的应用,旋转的性质,掌握“旋转前后的对应角相等”是解本题的关键.9、A【分析】根据轴对称图形与中心对称图形的概念求解【详解】解:第一个图

12、形既不是轴对称图形,也不是中心对称图形,不符合题意;第二个图形是轴对称图形,不是中心对称图形,不符合题意;第三个图形是轴对称图形,不是中心对称图形,不符合题意;第四个图形既是轴对称图形,也是中心对称图形,符合题意;既是中心对称图形又是轴对称图形的只有1个,故选:A【点睛】本题主要考查了中心对称图形与轴对称图形的概念轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合10、B【分析】根据轴对称图形与中心对称图形的概念求解【详解】解:A不是中心对称图形,是轴对称图形,故此选项不合题意;B是轴对称图形,也是中心对称图形,故此选项符合题意;C是轴

13、对称图形,不是中心对称图形,故此选项不合题意;D不是轴对称图形,是中心对称图形,故此选项不合题意故选:B【点睛】此题主要考查了中心对称图形与轴对称图形的概念:轴对称图形:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形;中心对称图形:在同一平面内,如果把一个图形绕某一点旋转180,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形二、填空题1、故答案为: 【点睛】本题考查了平移的性质,掌握平移的性质是解题的关键3【分析】根据旋转角相等可得,进而勾股定理求解即可【详解】解:四边形是正方形将绕点B顺时针方向旋转,能与重合,故答案为:【点睛】本题考查了旋转的性质,勾

14、股定理,求得旋转角相等且等于90是解题的关键2、75【分析】根据等边三角形的性质以及旋转的性质进行解答即可【详解】解:如图,是等边三角形,绕点顺时针旋转后得,故答案为:75【点睛】本题考查了等边三角形的性质,旋转的性质以及三角形内角和定理的应用,熟练掌握旋转后的对应角相等是解本题的关键3、【分析】根据两个点关于原点对称时,它们的坐标符号相反,即点P(x,y)关于原点O的对称点是P(-x,-y),进而得出答案【详解】解:点A(a,3)与点B(2,b)关于原点对称,a=-2,b=3,ba= 3-2=故答案为:【点睛】本题主要考查了关于原点对称点的性质,正确记忆关于原点对称点的性质是解题关键4、AB

15、C ABC 平行 平行 【分析】根据平移的性质:经过平移,对应线段平行且相等,对应角相等,对应点所连接的线段平行且相等,平移不改变图形的形状、大小和方向,进行求解即可【详解】解:是ABC经过平移得到的,图中ABC与大小形状不变,线段AB与线段的位置关系式平行,线段与线段的关系式平行,故答案为:ABC,平行,平行【点睛】本题主要考查了平移的性质,解题的关键在于能够熟练掌握平移的性质5、9【分析】根据关于原点对称点的坐标特征求出、的值,再代入计算即可【详解】解:点与点关于原点成中心对称,即,故答案为:9【点睛】本题考查关于原点对称的点坐标特征,解题的关键是掌握关于原点对称的点坐标特征,即纵坐标互为

16、相反数,横坐标也互为相反数三、解答题1、(1)见解析;(2)画图见解析,点A1的坐标为(-4,1)【分析】(1)根据对称中心的性质可得对应点连线的交点即为对称中心;(2)根据题意作出A,B,C绕原点O旋转180得到的点A1,B1,C1,然后顺次连接A1,B1,C1即可,根据点A1的在平面直角坐标系中的位置即可求得坐标【详解】(1)如图所示,点O即为要求作的对称中心(2)如图所示,A1B1C1即为要求作的三角形,由点A1的在平面直角坐标系中的位置可得,点A1的坐标为(-4,1)【点睛】此题考查了平面直角坐标系中的几何旋转作图,中心对称的性质,解题的关键是熟练掌握中心对称的性质2、(1)见解析;A

17、1(-1,-2),B1(4,0),C1(2,3);(2)三角形A1B1C1的面积为【分析】(1)分别作出A,B,C的对应点A1,B1,C1即可(2)利用分割法求面积即可【详解】(1)点平移到点,平移的规律为:向右平移3个单位,向下平移1个单位,为(,),为(4,0),为(2,3); 平移后的三角形如图所示:(2)面积为:【点睛】本题考查作图-复杂作图,三角形的面积,坐标与图形变化-平移等知识,解题的关键是理解题意,灵活运用所学知识解决问题3、(1)A(-1,2) B(-3,1); (2)见解析;(3)见解析【分析】(1)根据 A,B 的位置写出坐标即可;(2)分别求出 A,B,C 的对应点 A

18、1,B1,C1的坐标,然后描点A1(1,2),B1(3,1),C1(0,-1),顺次连结A1B1, B1C1,C1A1即可;(3)分别求出 A,B,C 的对应点A2(1,-4)、B2(3,-3)、C2(0,-1),然后描点,顺次连结A2B2, B2C2,C2A2即可【详解】(1)由题意 A(-1,2),B(-3,1)(2)ABC关于y轴对称的A1B1C1,对应点的坐标纵坐标不变,横坐标互为相反数,A(-1,2),B(-3,1)C(0,-1),A1(1,2),B1(3,1),C1(0,-1),在平面直角坐标系中描点A1(1,2),B1(3,1),C1(0,-1),顺次连结A1B1, B1C1,C

19、1A1,如图A1B1C1即为所求(3)ABC绕点C旋转180后得到的A2B2C2,关于点C成中心对称,对应点的横坐标为互为相反数,A(-1,2),B(-3,1)C(0,-1),A2、B2、C2的横坐标分别为1,3,0,纵坐标分别为-1-(2+1)=-4,-1-(1+1)=-3,-1,A2(1,-4)、B2(3,-3)、C2(0,-1),在平面直角坐标系中描点A2(1,-4)、B2(3,-3)、C2(0,-1),顺次连结A2B2, B2C2,C2A2,如图A2B2C2即为所求【点睛】本题主要考查图形与坐标,作图-轴对称变换,旋转变换等知识,解答本题的关键是熟练掌握基本知识,属于中考常考题型4、(

20、1)BE=CD,理由见解析;(2)成立,理由见解析【分析】(1)根据等腰直角三角形的性质可得AB=AC,AE=AD,再根据等量关系可得线段BE与线段CD的关系;(2)根据等腰直角三角形的性质得到AB=AC,AE=AD,由旋转的性质可得BAE=CAD,根据全等三角形的性质即可得到结论【详解】解:(1)BE=CD,理由:ABC和AED都是等腰直角三角形,BAC=EAD=90,AB=AC,AE=AD,AE-AB=AD-AC,BE=CD,故答案为:BE=CD;(2)成立,理由:ABC和AED都是等腰直角三角形,BAC=EAD=90,AB=AC,AE=AD,由旋转的性质可得BAE=CAD,在BAE与CAD中,BAECAD(SAS),BE=CD【点睛】本题考查了等腰直角三角形的性质,等量代换,旋转的性质,全等三角形的判定和性质,熟练掌握旋转的性质是解题的关键5、(1)见解析;(2)见解析;(3)16【分析】(1)利用平移的性质得出对应点位置进而得出答案;(2)利用关于x轴对称的点的坐标找出A2、B2、C2的坐标,然后描点即可;(3)运用割补法求解即可【详解】解:(1)如图,即为所作;(2)如图,即为所作;(3)四边形的面积=16【点睛】此题主要考查了轴对称变换以及平移变换和四边形面积求法,根据题意得出对应点位置是解题关键

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁