《五年级数学教案——《公倍数和公因数》教材分析.doc》由会员分享,可在线阅读,更多相关《五年级数学教案——《公倍数和公因数》教材分析.doc(7页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、五年级数学教案公倍数和公因数教材分析在四年级(下册)教材里,学生已经建立了倍数和因数的概念,会找10以内自然数的倍数,100以内自然数的因数。本单元继续教学倍数和因数的知识,要理解公倍数、最小公倍数和公因数、最大公因数的意义,学会找两个数的最小公倍数和最大公因数的方法。为以后进行通分、约分和分数四则计算作准备。全单元的教学内容分三部分编排。第2225页教学公倍数。主要是两个数的公倍数、最小公倍数的意义,求最小公倍数的方法。第2631页教学公因数。包括两个数的公因数、最大公因数的意义,求最大公因数的方法。在练习五里还安排了最小公倍数与最大公因数的比较。第3236页实践与综合应用。利用邮政编码、身
2、份证号码等实例,教学用数字编码表示信息。在你知道吗里,介绍了我国古代曾经用辗转相除法求最大公因数,也介绍了现代人们经常用短除法求两个数的最大公因数和最小公倍数。在阅读这篇材料后,如果学生愿意用短除法求两个数的最大公因数或最小公倍数,是允许的。但是,不要求全体学生掌握和使用短除法。编排的一道思考题,是可以用公因数知识解决的实际问题。1在现实的情境中教学概念,让学生通过操作领会公倍数、公因数的含义。例1教学公倍数和最小公倍数,例3教学公因数和最大公因数,都是形成新的数学概念,都让学生在操作活动中领会概念的含义。例1先用长3厘米、宽2厘米的长方形纸片,分别铺边长6厘米和8厘米的正方形,发现正好铺满边
3、长6厘米的正方形,不能正好铺满边长8厘米的正方形,并从长方形纸片的长、宽和正方形边长的关系,对铺满和不能铺满的原因作出解释。再想像这张长方形纸片还能正好铺满哪些正方形,从倍数的角度总结规律,为形成新的数学概念积累丰富的感性材料。然后揭示公倍数与最小公倍数的含义,把感性认识提升成理性认识。教材选择长方形纸片铺正方形的活动教学公倍数,是因为这一活动能吸引学生发现和提出问题,能引导学生思考。学生用同一张长方形纸片铺两个不同的正方形,面对出现的两种结果,会提出为什么有时正好铺满、有时不能,什么时候正好铺满、什么时候不能这些有研究价值的问题。他们沿着正方形的边铺长方形纸片,就会想到正好铺满与不能正好铺满
4、的原因可能和边长有关,于是产生进一步研究正方形边长和长方形长、宽之间关系的愿望。分析正方形的边长和长方形长、宽之间的关系,按学生的认知规律,设计成两个层次:第一个层次联系铺的过程与结果,从两个正方形的边长除以长方形的长、宽没有余数和有余数的层面上,体会正好铺满与不能正好铺满的原因。第二个层次根据正好铺满边长6厘米的正方形、不能正好铺满边长8厘米的正方形的经验,联想还能正好铺满边长是几厘米的正方形。先找到这些正方形,把它们的边长从小到大排列,知道这样的正方形有无数多个。再用既是2的倍数,又是3的倍数概括地描述这些正方形边长的特征。显然,前一层次形象思维的成分较大,思考难度较小,对后一层次的抽象认
5、识有重要的支持作用。让学生在现实情境中,通过活动领悟公倍数的含义,不仅体现在例题的教学中,还落实到练习里。第23页练一练在2的倍数上画,在5的倍数上画。从数表里的10、20、30三个数既画了又画了,体会它们既是2的倍数,又是5的倍数,是2和5的公倍数。练习四第4、7、8题都是与公倍数有关的实际问题,让学生通过涂颜色、填表格、圈日期等活动体会公倍数的含义。例3教学公因数、最大公因数的含义,也通过铺的活动组织教学。与例1不同的是,例3用2张边长不同的正方形纸片分别去铺同一个长方形,是形成公因数概念的需要。例题编写和练习编排与教学公倍数相似,这里不再重复。2突出概念的内涵、外延,让学生准确理解概念。
6、概念的内涵是指这个概念所反映的一切对象的共同的本质属性。公倍数是几个数公有的倍数,公因数是几个数公有的因数,可见几个数公有的是公倍数和公因数这两个概念的本质属性。在倍数、因数的基础上教学公倍数、公因数,关键在于突出公有的含义。教材用既是.又是.的描述,让学生理解公有的意思。例1先联系长3厘米、宽2厘米的长方形纸片正好铺满边长6厘米、12厘米、24厘米.的正方形这些现象,从正方形的边长分别除以长方形纸的长和宽都没有余数,得出正方形的边长既是2的倍数,又是3的倍数,一方面概括了这些正方形边长的特点,另一方面让学生体会既是.又是.的意思。然后在6、12、18、24.既是2的倍数,又是3的倍数,它们是
7、2和3的公倍数这句话里把既是.又是.进一步概括为公倍数,形成公倍数的概念。集合图能直观形象地显示公倍数、公因数的含义。第23页把6的倍数与9的倍数分别写到两个集合圈里,这两个集合圈有一部分重叠,在重叠部分里写的数既是6的倍数,也是9的倍数,是6和9的公倍数。先观察这个集合图,再填写第24页的集合图,学生能进一步体会公倍数的含义。概念的外延是指这个概念包括的一切对象。对具体事例是否属于概念作出判断,就是识别概念的外延,加强对概念的认识。例1在揭示2和3的公倍数的概念,指出它们的公倍数是6、12、18、24.后,提出8是2和3的公倍数吗这个问题,利用反例凸现公倍数的含义。让学生明白8只是2的倍数,
8、不是3的倍数,从而进一步明确公倍数的概念。练习四第4题先在表格里分别写出4、5、6的倍数,再寻找4和5、5和6、4和6的公倍数,也有助于学生识别概念的外延。3运用数学概念,让学生探索找两个数的最小公倍数、最大公因数的方法。本单元只教学两个数的公倍数、最小公倍数和两个数的公因数、最大公因数。因为这些是最基础的数学知识,在约分和通分时应用最多。只要这些基础知识扎实,即使遇到三个分数的通分,学生也能灵活处理。不编排例题教学短除法求最小公倍数和最大公因数,而是采用写出两个数的倍数或因数,找出它们的最小公倍数或最大公因数的方法。这样安排的目的是,在运用概念解决问题的过程中,进一步加强数学概念的教学。例2
9、教学求两个数的最小公倍数,出现了多种解决问题的方法,这些方法的思路都出自公倍数和最小公倍数的概念,从6和9的公倍数、最小公倍数的意义引发出来。学生可能先分别写出6和9的倍数,再找出它们的公倍数和最小公倍数。由于倍数需一个一个地写,还要逐个逐个地比,所以得出公倍数和最小公倍数比较慢。学生也可能在9的倍数里找6的倍数,只要依次想出9的倍数(即9times;1、9times;2、9times;3.的积),逐一判断是不是6的倍数,操作比较方便。尤其求两个较小数(不超过10)的最小公倍数时,更能显出这种方法的优点。当然,在6的倍数里找9的倍数,也是一种方法,但没有9的倍数里找6的倍数快捷。教材安排学生在
10、交流中体会各种方法,首先是理解各种方法的共同点,都在寻找既是6的倍数、又是9的倍数,而且是尽量小的那个数。然后是理解各种方法的个性特点,从中作出自己的选择。例4求两个数的最大公因数,教学方法和例2相似。求8和12的最大公因数的几种方法中,教材呈现的第一种方法比较适宜多数学生。因为一个数的因数的个数是有限的,先写出两个数的全部因数,再找出最大公因数,操作不麻烦。第二种方法从小到大依次想较小数的因数,稍不留心就会遗漏某一个因数。练习五编排第3题的意图就在于此。练习四第5题在初步学会求两个数的最小公倍数之后安排,两个色块分别呈现最小公倍数的两种特殊情况。左边的色块里,每组的两个数之间有倍数与因数关系
11、,它们的最小公倍数是较大的那个数。右边的色块里,每组两个数的最小公倍数是它们的乘积。练习五第6题是初步会求两个数的最大公因数后安排的。左边色块里,每组的两个数之间也有倍数与因数的关系,它们的最大公因数是较小的那个数。右边色块里,每组两个数的最大公因数是1。这些特殊情况,在通分和约分时会经常出现。教学时可以按色块进行,先分别求出同一色块四组数的最小公倍数或最大公因数,再找出相同的特点,通过交流内化成求最小公倍数和最大公因数的技能。要注意的是,学生有倍数与因数的知识,能够理解同组两个数之间的倍数、因数关系,以及它们的最小公倍数和最大公因数的规律。由于新教材不讲互质数,也不教短除法,所以两个互质数的最小公倍数是它们的乘积、最大公因数是1,这些特殊情况,只能在具体对象中感受,不宜深入研究原因,更不要出结语让学生记忆。第9题分别写出1、2、3、4.20这些数与3、2、4、5的最大公因数,在发现有趣规律的同时,也在感受两个数的最大公因数的两种特殊情况。7