《数学建模第六章数值分析模型精品文稿.ppt》由会员分享,可在线阅读,更多相关《数学建模第六章数值分析模型精品文稿.ppt(61页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、数学建模第六章数值分析模型第1页,本讲稿共61页第六章第六章 数值分析模型数值分析模型黑龙江科技学院 数数 学学 建建 模模 理学院理学院第2页,本讲稿共61页弦截法和抛物线法弦截法和抛物线法数值分析模型数值分析模型第六章非线性方程求根非线性方程求根迭代法迭代法重点重点:插值法和非线性方程求根插值法和非线性方程求根难点难点:利用数值分析方法建立数学模型利用数值分析方法建立数学模型插值法插值法黑龙江科技学院 数数 学学 建建 模模 理学院理学院建模举例建模举例第3页,本讲稿共61页黑龙江科技学院 数数 学学 建建 模模 理学院理学院 数值分析(数值分析(numerical analysis)是研
2、究用计算机)是研究用计算机求解各种数学计算问题的数值计算方法及其理论与软件实求解各种数学计算问题的数值计算方法及其理论与软件实现的学科。数值分析就是介绍如何用计算机来解决数学问现的学科。数值分析就是介绍如何用计算机来解决数学问题,以各种各样的程序语言来设计出数值计算程序,然后题,以各种各样的程序语言来设计出数值计算程序,然后依靠计算机的强大计算能力来求解这些数学问题,数值分依靠计算机的强大计算能力来求解这些数学问题,数值分析对数学理论与程序设计并重。析对数学理论与程序设计并重。运用数值分析解决问题的过程可分为如下几步:实运用数值分析解决问题的过程可分为如下几步:实际问题际问题数学模型数学模型数
3、值计算方法数值计算方法程序设计程序设计上机计算上机计算求出结果。求出结果。数值分析这门学科有如下特点:数值分析这门学科有如下特点:(1)面向计算机)面向计算机(2)有可靠的理论分析)有可靠的理论分析(3)要有好的计算复杂性)要有好的计算复杂性(4)要有数值实验)要有数值实验(5)要对算法进行误差分析)要对算法进行误差分析第4页,本讲稿共61页函数逼近问题设设y=f(x),若对以函数,若对以函数y=f(x)来说来说 其值是通过实验或观测得到,不知其解析其值是通过实验或观测得到,不知其解析表达式;表达式;解析表达式很复杂,不便分析。解析表达式很复杂,不便分析。问题:问题:能否构造一个较为简单的函数
4、能否构造一个较为简单的函数P(x)近似近似地表示地表示f(x)。这就是函数逼近问题。这就是函数逼近问题。上述函数上述函数f(x)称为被逼近函数,称为被逼近函数,P(x)称为逼近称为逼近函数。函数。逼近方式有两种:插值和拟合。逼近方式有两种:插值和拟合。理学院理学院黑龙江科技学院 数数 学学 建建 模模第5页,本讲稿共61页在生产和科学研究中,经常出现这样的问题:由实验或测量得到的某一函数 在一系列点 处的值 ,需要构造一个简单函数 作为函数 的近似表达式:,使得 这类问题称为插值问题插值问题.-被插值函数被插值函数-插值函数插值函数-插值节点插值节点-插值条件插值条件 6.1 插值法插值法插值
5、函数:插值函数:有各种类型,如代数多项式,三角函数,有各种类型,如代数多项式,三角函数,有理函数等。当插值函数为多项式时,称为(代数)有理函数等。当插值函数为多项式时,称为(代数)插值多项式。插值多项式。minminx xi i,maxxmaxxi i=a,b-=a,b-插值区间插值区间第6页,本讲稿共61页x0 xixy0yiyyf(x)o从几何上看,插值法就是要求一条曲线从几何上看,插值法就是要求一条曲线 它通过已它通过已知的知的n+1n+1个点个点(xi,yi)(i=0,1,(xi,yi)(i=0,1,n),n),并用,并用 近似表示近似表示 f(x).f(x).(下图)(下图)黑龙江科
6、技学院 数数 学学 建建 模模 理学院理学院第7页,本讲稿共61页 一、一、插值基函数与插值基函数与LagrangeLagrange插值插值1.1.简单情形简单情形 (1)(1)n n=1=1时时.设设 y yi i=f f(x xi i)i i=0=0,1.1.作直线方程:作直线方程:令:令:称称 为为两点式插值两点式插值或或线性插值线性插值。黑龙江科技学院 数数 学学 建建 模模 理学院理学院第8页,本讲稿共61页 (2)(2)n n=2=2时时.设设y yi i=f f(x xi i)i i=0=0,1 1,2 2.令:令:称称 为为三点式插值三点式插值或或抛物插值抛物插值。黑龙江科技学
7、院 数数 学学 建建 模模 理学院理学院第9页,本讲稿共61页2.推广推广 n=1时,记时,记 则则 n=2时,记时,记则则黑龙江科技学院 数数 学学 建建 模模 理学院理学院第10页,本讲稿共61页一般地令一般地令 则则l lj j(x)(x)(j=0(j=0,1 1,2 2,n)n)为为n n次多项式次多项式称为称为LagrangeLagrange插值基函数插值基函数,为为LagrangeLagrange插值多插值多项式项式。黑龙江科技学院 数数 学学 建建 模模 理学院理学院第11页,本讲稿共61页黑龙江科技学院 数数 学学 建建 模模 理学院理学院例例6.1.1 给定数组3.1533.
8、0622.9792.9032.8332.768907978777675(1)作一分段线性插值函数(2)用上述插值函数计算和的函数值。第12页,本讲稿共61页黑龙江科技学院 数数 学学 建建 模模 理学院理学院解解 由插值基函数的表达式,在75到80的6个点间有5个线性插值函数,以区间为例,此时则在区间上有.第13页,本讲稿共61页黑龙江科技学院 数数 学学 建建 模模 理学院理学院Matlab代码如下:function Y,Phi=FenDuanXianXingChaZhi(xx)clc x1=75:80;y=2.768,2.833,2.903,2.979,3.062,3.153;n=size
9、(x1,2);syms x positivefor i=1:(n-1)Phi(i)=y(i)*(x-x1(i+1)/(x1(i)-x1(i+1)+y(i+1)*(x-x1(i)/(x1(i+1)-x1(i);endPhi=Phi;l=find(x1xx);Y=subs(Phi(l(1)-1),xx);end第14页,本讲稿共61页函数的调用格式为xx=75.5Y,Phi=FenDuanXianXingChaZhi(xx)得到的结果为:Y=2.8005Phi=(13*x)/200-2107/1000 (7*x)/100-2487/1000 (19*x)/250-2949/1000 (83*x)/
10、1000-699/200 (91*x)/1000-4127/1000黑龙江科技学院 数数 学学 建建 模模 理学院理学院Y=2.8005的值就是的函数值。的函数值是3.0039。同理可得到第15页,本讲稿共61页 理学院理学院例例6.1.2 由函数生成以下离散数据,并利用其计算函数在x=1.98,y=0.36处的函数值。并与真值作比较。y x0.10.20.30.40.50.60.50.8485551.9181153.6815226.5888911.3823319.285371.01.0473912.1169513.8803586.78772511.5811619.484211.51.2442
11、412.3138024.0772096.98457611.7780119.681062.01.438142.50774.2711077.17847411.9719119.874962.51.6281472.6977074.4611157.36848212.1619220.06496黑龙江科技学院 数数 学学 建建 模模第16页,本讲稿共61页使用了matlab系统函数interp2,代码如下,x=0.5:0.5:3.00.1:0.1:0.6;y=0.5:0.5:3.0;x,y=meshgrid(x,y);z=exp(x)+sin(y)+y-1;z_spline=interp2(x,y,z,1.
12、98,0.36,spline)计算结果为z_spline=6.9554,即对函数使用二次插值后在点计算出的而实际值是6.9550,二次插值的绝对误差为0.0004。值是6.9554。黑龙江科技学院 数数 学学 建建 模模 理学院理学院第17页,本讲稿共61页黑龙江科技学院 数数 学学 建建 模模二、牛顿插值二、牛顿插值 来计算函数值 在理论上,利用插值基函数求出Lagrange插值多项式是很重要的。但用 来计算 的近似值却不大方便,特别是达不到要求的精度,这就要求增加插值节点,插值节点的增加意味着要重新计算全部的插值基函数。Lagrange插值法的计算量就变得很大了为此我们需要另一种便于计算的
13、插值多项式。理学院理学院第18页,本讲稿共61页黑龙江科技学院 数数 学学 建建 模模 理学院理学院定定义义6.1.1函数的一阶均差定义为称为函数关于点的一阶均差.一般地,记阶均差为称为关于点的阶均差.类似地,可以定义二阶均差第19页,本讲稿共61页黑龙江科技学院 数数 学学 建建 模模 理学院理学院根据均差定义,把看成上一点,可得只要把后一式代入前一式,就得到牛顿插值多项式其中我们称为Newton均差插值多项式。.第20页,本讲稿共61页黑龙江科技学院 数数 学学 建建 模模 理学院理学院注意注意:因此Newton插值多项式与Lagrange插值多项式只是形式不同,它们都是同一个多项式。(2
14、)由于插值点固定时插值多项式是存在唯一的。(1)牛顿法比Lagrange插值的计算量少,且便于程序设计第21页,本讲稿共61页浮力问题浮力问题一个半径为一个半径为r,密度为,密度为的球重的球重 ,高,高为为h的球冠体体积为的球冠体体积为 ,求,求 的球浸在水中部分的深度是半径的几分之几的球浸在水中部分的深度是半径的几分之几(见图(见图1)。)。6.2 非线性方程求根非线性方程求根黑龙江科技学院 数数 学学 建建 模模 理学院理学院第22页,本讲稿共61页图图1黑龙江科技学院 数数 学学 建建 模模 理学院理学院第23页,本讲稿共61页问题分析问题分析设设=0.6的球浸在水中部分的深度为的球浸在
15、水中部分的深度为h由物理学中知识,漂浮时,重力等于浮力可知:由物理学中知识,漂浮时,重力等于浮力可知:令令h=kr即:即:问题:如何求解问题:如何求解k的值?的值?黑龙江科技学院 数数 学学 建建 模模 理学院理学院第24页,本讲稿共61页黑龙江科技学院 数数 学学 建建 模模工程实际与科学计算中都遇到大量求解非线性方程的问题。设非线性方程为求数 使得 则称 为方程(6.2.1)的根,也称函数 的零点。求解非线性方程在初等代数中就有研究。例如,代数方程(二次、三次方程等)、超越方程(三角方程,指数、对数方程等)。但是我们发现即使是最基本的代数方程,当次数超过4时,一般情况下就不能 用公式表示方
16、程的根,至于 超越方程那 就更难了。(6.2.1)第25页,本讲稿共61页 研究用数值方法计算非线性方程的根非常必要。在求根时通常假设非线性方程 是关于 的连续函数 若令 它在坐标系下的图像为连续曲线,因此,求 的根就是求与轴的交点.如果 在区间 仅有一个根,则称 为方程 的单根区间;如果 在区间 上有不止一个根,则称 为方程 的多根区间。方程的单根区间和多根区间统称为方程的有根区间。为了研究方便,我们主要研究方程在单根区间上的求解方法。黑龙江科技学院 数数 学学 建建 模模第26页,本讲稿共61页abx0 x1a1b2x*一、区间对分法(二分法)一、区间对分法(二分法)1.确定有根区间确定有
17、根区间:2.逐次对分区间:逐次对分区间:3.取根的近似值取根的近似值:b1a2黑龙江科技学院 数数 学学 建建 模模 理学院理学院 .,),(,0)()(,)(称其为有根区间称其为有根区间的根的根内必有方程内必有方程则则若若 PointSize0.01gp=ListPlotd1,PlotStylePointSize0.01黑龙江科技学院 数数 学学 建建 模模 理学院理学院第57页,本讲稿共61页运行得到如下图象运行得到如下图象:黑龙江科技学院 数数 学学 建建 模模 理学院理学院第58页,本讲稿共61页2)分析数据散布图)分析数据散布图由上图可见,取正弦级数为拟合曲线较为合适由上图可见,取正
18、弦级数为拟合曲线较为合适。3)选择函数关系形式)选择函数关系形式.为此这里令为此这里令用用Mathematica计算计算中的参数中的参数a1,a2,a3。输入命令:输入命令:f=Fitd1,SinPi*t/20,Sin3*Pi*t/20,Sin5*Pi*t/20,tfp=Plotf,t,0,10Showgp,fp黑龙江科技学院 数数 学学 建建 模模 理学院理学院第59页,本讲稿共61页运行后显示运行后显示从上图可见,拟合效果很好。从上图可见,拟合效果很好。黑龙江科技学院 数数 学学 建建 模模 理学院理学院第60页,本讲稿共61页本章小结本章介绍常用的数值分析算法,插值法、曲线拟合和非线性方程求根的迭代法,利用这些数值方法解决实际问题。旨在使大家对数值分析方法解决实际问题有一个初步的了解。黑龙江科技学院 数数 学学 建建 模模 理学院理学院第61页,本讲稿共61页