《自学考试真题:14-04全国全国自考线性代数(经管类)真题.doc》由会员分享,可在线阅读,更多相关《自学考试真题:14-04全国全国自考线性代数(经管类)真题.doc(4页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、绝密考试结束前全国2014年4月高等教育自学考试线性代数(经管类)试题课程代码:04184请考生按规定用笔将所有试题的答案涂、写在答题纸上。说明:在本卷中,AT表示矩阵A的转置矩阵,A*表示矩阵A的伴随矩阵,E表示单位矩阵,|A|表示方阵A的行列式,r(A)表示矩阵A的秩。选择题部分注意事项:1答题前,考生务必将自己的考试课程名称、姓名、准考证号用黑色字迹的签字笔或钢笔填写在答题纸规定的位置上。2每小题选出答案后,用2B铅笔把答题纸上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其他答案标号。不能答在试题卷上。一、单项选择题(本大题共5小题,每小题2分,共10分)在每小题列出的四个备
2、选项中只有一个是符合题目要求的,请将其选出并将“答题纸”的相应代码涂黑。错涂、多涂或未涂均无分。1设行列式=3,删行列式=A-15B-6C6D152设A,B为4阶非零矩阵,且AB=0,若r(A)=3,则r(B)=A1B2C3D43设向量组=(1,0,0)T,=(0,1,0)T,则下列向量中可由,线性表出的是A(0,-1,2)TB(-1,2,0)TC(-1,0,2)TD(1,2,-1)T4设A为3阶矩阵,且r(A)=2,若,为齐次线性方程组Ax=0的两个不同的解。k为任意常数,则方程组Ax=0的通解为AkBkCD5二次型f(x1,x2,x3)=x12+2x22+x32-2x1x2+4x1x3-2
3、x2x3的矩阵是非选择题部分注意事项:用黑色字迹的签字笔或钢笔将答案写在答题纸上,不能答在试题卷上。二、填空题(本大题共10小题,每小题2分,共20分)63阶行列式第2行元素的代数余子式之和A21+A22+A23=_7设A为3阶矩阵,且|A|=2,则|A*|=_8设矩阵A=,B=,则ABT=_9设A为2阶矩阵,且|A|=,则|(-3A)-l|=_10若向量组 =(1,-2,2)T, =(2,0,1)T,=(3,k,3)T线性相关,则数k=_11与向量(3,-4)正交的一个单位向量为_12齐次线性方程组的基础解系所含解向量个数为_13设3阶矩阵A的秩为2,为非齐次线性方程组Ax=b的两个不同解,
4、则方程组Ax=b的通解为_14设A为n阶矩阵,且满足|E+2A|=0,则A必有一个特征值为_15二次型f(x1,x2,x3)=x12+2x1x2+x22+x32的正惯性指数为_三、计算题(本大题共7小题,每小题9分,其63分)16计算行列式D=的值.17设矩阵A=,B=,求可逆矩阵P,使得PA=B.18设矩阵A=,B=,矩阵X满足XA=B,求X.19求向量组=(1,-1,2,1)T,=(1,0,1,2)T,=(0,2,0,1)T,=(-1,0,-3,-1)T,=(4,-1,5,7)T的秩和一个极大线性无关组,并将向量组中的其余向量由该极大线性无关组线性表出20求线性方程组 的通解(要求用它的一个特解和导出组的基础解系表示)21已知矩阵A=的一个特征值为1,求数a,并求正交矩阵Q和对角矩阵,使得Q-1AQ=22用配方法化二次型f(x1,x2,x3)=x12+3x22-2x32+4x1x2+2x2x3为标准形,并写出所作的可逆线性变换四、证明题(本题7分)23设,为齐次线性方程组Ax=0的一个基础解系,证明2+,+2+,+2也是该方程组的基础解系