《小升初数学知识及题型整理.docx》由会员分享,可在线阅读,更多相关《小升初数学知识及题型整理.docx(16页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、小升初数学知识及题型整理一整数和小数1最小的一位数是1,最小的自然数是02小数的意义:把整数“1”平均分成10份、100份、1000份这样的一份或几份分别是十分之几、百分之几、千分之几可以用小数来表示。3小数点左边依次是整数部分,小数点右边是小数部分,依次是十分位、百分位、千分位4小数的分类:小数有限小数 无限循环小数无限小数 无限不循环小数5整数和小数都是按照十进制计数法写出的数。6小数的性质:小数的末尾添上0或者去掉0,小数的大小不变。7小数点向右移动一位、二位、三位原来的数分别扩大10倍、100倍、1000倍小数点向左移动一位、二位、三位原来的数分别缩小10倍、100倍、1000倍 二数
2、的整除1整除:整数a除以整数b(b0),除得的商正好是整数而且没有余数,我们就说a能被b整除,或者说b能整除a。2约数、倍数:如果数a能被数b整除,a就叫做b的倍数,b就叫做a的约数。3一个数倍数的个数是无限的,最小的倍数是它本身,没有最大的倍数。一个数约数的个数是有限的,最小的约数是1,最大的约数是它本身。4按能否被2整除,非0的自然数分成偶数和奇数两类,能被2整除的数叫做偶数,不能被2整除的数叫做奇数。5按一个数约数的个数,非0自然数可分为1、质数、合数三类。质数:一个数,如果只有1和它本身两个约数,这样的数叫做质数。质数都有2个约数。合数:一个数,如果除了1和它本身还有别的约数,这样的数
3、叫做合数。合数至少有3个约数。最小的质数是2,最小的合数是4120以内的质数有:2、3、5、7、11、13、17、19120以内的合数有“4、6、8、9、10、12、14、15、16、186能被2整除的数的特征:个位上是0、2、4、6、8的数,都能被2整除。能被5整除的数的特征:个位上是0或者5的数,都能被5整除。能被3整除的数的特征:一个数的各位上数的和能被3整除,这个数就能被3整除。7质因数:如果一个自然数的因数是质数,这个因数就叫做这个自然数的质因数。8分解质因数:把一个合数用质因数相乘的形式表示出来,叫做分解质因数。9公约数、公倍数:几个数公有的约数,叫做这几个数的公约数;其中最大的一
4、个,叫做这几个数的最大公约数。几个数公有的倍数,叫做这几个数的公倍数;其中最小的一个,叫做这几个数的最小公倍数。10一般关系的两个数的最大公约数、最小公倍数用短除法来求;互质关系的两个数最大公约数是1,最小公倍数是两数之积;倍数关系的两个数的最大公约数是小数,最小公倍数是大数。11互质数:公约数只有1的两个数叫做互质数。12两数之积等于最小公倍数和最大公约数的积。三四则运算1一个加数=和-另一个加数 被减数=差+减数减数=被减数-差一个因数=积另一个因数被除数=商除数除数=被除数商2在四则运算中,加、减法叫做第一级运算,乘、除法叫做第二级运算。3.运算定律:(1)加法交换律:a+b=b+a乘法
5、交换律:ab=ba两个数相加,交换加数的位置,它们的和不变。两个数相加,交换因数的位置,它们的积不变。(2)加法结合律:(a+b)+c=a+(b+c)乘法结合律:(ab)c=a(bc)三个数相加,先把前两个数相加,再同第三个数相加;或者先把后两个数相加,再同第一个数相加,它们的和不变。三个数相乘,先把前两个数相乘,再同第三个数相乘;或者先把后两个数相乘,再同第一个数相乘,它们的积不变。(3)乘法分配律:(a+b)c=ac+bc两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。(4)减法的性质:a-b-c=a-(b+c)除法的性质:abc=a(bc)从一个数里连续
6、减去两个数,等于从这个数里减去两个减数的和。一个数连续除以两个数,等于这个数除以两个除数的积。四关系式1速度时间=路程路程时间=速度路程速度=时间工作效率工作时间=工作总量工作总量工作效率=工作时间工作总量工作时间=工作效率单价数量=总价总价数量=单价总价单价=数量五方程1方程:含有未知数的等式叫做方程。2方程的解:使方程左右两边相等的未知数的值,叫做方程的解。3解方程:求方程解的过程叫做解方程。六分数和百分数1分数的意义:把单位“1”平均分成若干份,表示这样的一份或几份的数叫做分数。2分数单位:把单位“1”平均分成若干份,表示其中一份的数,叫做分数单位。3分数和除法的联系:分数的分子就是除法
7、中的被除数,分母就是除法中的除数。分数和小数的联系:小数实际上就是分母是10、100、1000的分数。分数和比的联系:分数的分子就是比的前项,分数的分母就是比的后项。4分数的分类:分数可以分为真分数和假分数。5真分数:分子小于分母的分数叫做真分数。真分数小于1。假分数:分子大于或等于分母的分数叫做假分数。假分数大于或者等于1。6最简分数:分子与分母互质的分数叫做最简分数。7分数的基本性质:分数的分子和分母同时乘或除以相同的数(零除外),分数的大小不变。8这样的分数可以化成有限小数:前提是这个分数要是最简分数,如果分母只含有2、5这2个质因数,这样的分数就能化成有限小数。9百分数:表示一个数是另
8、一个数的百分之几的数叫做百分数。百分数也叫做百分率或者百分比。百分数通常用“%”来表示。七量的计量1长度单位有:千米、米、分米、厘米、毫米,写出它们之间的进率面积单位有:平方千米、公顷、平方米、平方分米、平方厘米,写出它们之间的进率。体积(容积)单位有:立方米、立方分米(升)、立方厘米(毫升),写出它们之间的进率。质量单位有:吨、千克、克,写出它们之间的进率。时间单位有:世纪、年、月、日、时、分、秒,写出它们之间的进率。2一年中的大月有:1、3、5、7、8、10、12月,共7个,每月31天。小月有:4、6、9、11月,共4个,每月30天。 二月平年是28天,闰年是29天。3一年有4个季度,每个
9、季度3个月。4平年闰年:公历年份是4的倍数的一般是闰年,公历年份是整百数的,必须是400的倍数才是闰年。5.名数:把计量得到的数和单位名称合起来叫做名数。单名数:只带有一个单位名称的叫做单名数。复名数:带有两个或两个以上单位名称的叫做复名数。6名数的改写:高级单位的名数化成低级单位的名数乘进率,低级单位的名数化成高级单位的名数除以进率。八几何初步知识1线段、射线、直线的联系与区别:联系是三者都是直的,区别是线段有两个端点,可以量出长度;射线只有一个端点,可以无限延长;直线没有端点,两端都可以无限延长。射线和直线是无限长的。2角:从一点引出两条射线所组成的图形叫做角。3角的大小:角的大小看两条边
10、叉开的大小,叉开的越大,角越大。1计量角的大小的单位:度,用符号“”表示。2小于90的角叫做锐角;大于90而小于180的角叫做钝角。角的两边在一条直线上的角叫做平角。平角180。3垂线:两条直线相交成直角时,这两条直线互相垂直,其中一条直线是另一条直线的垂线,这两条直线的交点叫做垂足。(画图说明)4平行线:在同一平面内不相交的两条直线叫做平行线。也可以说这两条直线互相平行。(画图说明)平行线之间垂直线段的长度都相等。5三角形:有三条线段围成的图形叫做三角形。6三角形的分类:(1)按角分:锐角三角形、钝角三角形、直角三角形。(2)按边分:一般三角形、等腰三角形、等边三角形。10三角形三个内角和是
11、180。11四边形:由四条线段围成的图形。12圆是一种曲线图形。圆上任意一点到圆心的距离都相等,这个距离就是圆的半径的长。13圆的半径、直径都有无数条。在同一个圆里,直径是半径的2倍,半径是直径的二分之一。14轴对称图形:如果一个图形沿着一条直线对折,直线两恻的图形能够完全重合,这个图形就是轴对称图形。折痕所在的这条直线叫做对称轴。15学过的图形中的轴对称图形有:圆、等腰三角形、等边三角形、长方形、正方形、等腰梯形16周长:围成一个图形的所有边长的总和就是这个图形的周长。面积:物体的表面或围成的平面图形的大小,叫做它们的面积。17。表面积:立体图形所有面的面积的和,叫做这个立体图形的表面积。体
12、积:物体所占空间的大小叫做物体的体积。18长方体、正方体都有12条棱,6个面,8个顶点。正方体是特殊的长方体,等边三角形是特殊的等腰三角形。19圆柱的三个特点:(1)上下一样粗细(2)侧面是曲面(3)两个底面是相同的圆20圆柱的高:圆柱两个底面之间的距离叫做圆柱的高。圆柱的高有无数条,这些高都平行且相等。21把圆柱的侧面展开,得到一个长方形,这个长方形的长等于圆柱的底面的周长,宽等于圆柱的高。22圆周率是一个无限不循环小数。=3.14159265323把圆等份成若干份,拼成的图形接近于长方形。这个长方形的长相当于圆周长的一半,宽就是圆的半径。24圆锥的高:从圆锥的顶点到底面圆心的距离是圆锥的高
13、。25等底等高的圆锥的体积是圆柱的三分之一,等底等高的圆柱的体积是圆锥的三倍。体积和底面积相等的圆柱和圆锥,圆柱的高是圆锥的三分之一,圆锥的高是圆柱的3倍。小学数学题型归纳整理一、植树问题1非封闭线路上的植树问题主要可分为以下三种情形:如果在非封闭线路的两端都要植树,那么:株数段数1全长株距1全长株距(株数1)株距全长(株数1)如果在非封闭线路的一端要植树,另一端不要植树,那么:株数段数全长株距全长株距株数株距全长株数如果在非封闭线路的两端都不要植树,那么:株数段数1全长株距1全长株距(株数1)株距全长(株数1)2封闭线路上的植树问题的数量关系如下株数段数全长株距全长株距株数株距全长株数二、置
14、换问题:题中有二个未知数,常常把其中一个未知数暂时当作另一个未知数,然后根据已知条件进行假设性的运算。其结果往往与条件不符合,再加以适当的调整,从而求出结果。例:一个集邮爱好者买了10分和20分的邮票共100张,总值18元8角。这个集邮爱好者买这两种邮票各多少张?分析:先假定买来的100张邮票全部是20分一张的,那么总值应是201002000(分),比原来的总值多20001880120(分)。而这个多的120分,是把10分一张的看作是20分一张的,每张多算201010(分),如此可以求出10分一张的有多少张。列式:(20001880)(2010)1201012(张)10分一张的张数100128
15、8(张)20分一张的张数或是先求出20分一张的张数,再求出10分一张的张数,方法同上,注意总值比原来的总值少。三、盈亏问题(盈不足问题):题目中往往有两种分配方案,每种分配方案的结果会出现多(盈)或少(亏)的情况,通常把这类问题,叫做盈亏问题(也叫做盈不足问题)。解答这类问题时,应该先将两种分配方案进行比较,求出由于每份数的变化所引起的余数的变化,从中求出参加分配的总份数,然后根据题意,求出被分配物品的数量。其计算方法是:当一次有余数,另一次不足时:每份数(余数不足数)两次每份数的差当两次都有余数时:总份数(较大余数较小数)两次每份数的差当两次都不足时:总份数(较大不足数较小不足数)两次每份数
16、的差例1、解放军某部的一个班,参加植树造林活动。如果每人栽5棵树苗,还剩下14棵树苗;如果每人栽7棵,就差4棵树苗。求这个班有多少人?一共有多少棵树苗分析:由条件可知,这道题属第一种情况。列式:(144)(75)1829(人)5914451459(棵)或:79463459(棵)答:这个班有9人,一共有树苗59棵。例2、学校把一些彩色铅笔分给美术组的同学,如果每人分给五枝,则剩下45枝,如果每人分给7枝,则剩下3枝。求美术组有多少同学?彩色铅笔共有几枝?(453)(75)21(人)21545150(枝)答:略。四、年龄问题:年龄问题的主要特点是两人的年龄差不变,而倍数差却发生变化。常用的计算公式
17、是:成倍时小的年龄大小年龄之差(倍数1)几年前的年龄小的现年成倍数时小的年龄几年后的年龄成倍时小的年龄小的现在年龄例父亲今年54岁,儿子今年12岁。几年后父亲的年龄是儿子年龄的4倍?(5412)(41)42314(岁)儿子几年后的年龄14122(年)2年后答:2年后父亲的年龄是儿子的4倍。例2、父亲今年的年龄是54岁,儿子今年有12岁。几年前父亲的年龄是儿子年龄的7倍?(5412)(71)4267(岁)儿子几年前的年龄1275(年)5年前答:5年前父亲的年龄是儿子的7倍。例3、王刚父母今年的年龄和是148岁,父亲年龄的3倍与母亲年龄的差比年龄和多4岁。王刚父母亲今年的年龄各是多少岁?(1482
18、4)(31)300475(岁)父亲的年龄1487573(岁)母亲的年龄答:王刚的父亲今年75岁,母亲今年73岁。或:(1482)2150275(岁)75273(岁)五、鸡兔同笼问题:已知鸡兔的总只数和总足数,求鸡兔各有多少只的一类应用题,叫做鸡兔问题,也叫“龟鹤问题”、“置换问题”。一般先假设都是鸡(或兔),然后以兔(或鸡)置换鸡(或兔)。常用的基本公式有:(总足数鸡足数总只数)每只鸡兔足数的差兔数(兔足数总只数总足数)每只鸡兔足数的差鸡数例:鸡兔同笼共有24只。有64条腿。求笼中的鸡和兔各有多少只?(64224)(42)(6448)(42)16 28(只)兔的只数 24816(只)鸡的只数答
19、:笼中的兔有8只,鸡有16只。六、牛吃草问题(船漏水问题):若干头牛在一片有限范围内的草地上吃草。牛一边吃草,草地上一边长草。当增加(或减少)牛的数量时,这片草地上的草经过多少时间就刚好吃完呢?例1、一片草地,可供15头牛吃10天,而供25头牛吃,可吃5天。如果青草每天生长速度一样,那么这片草地若供10头牛吃,可以吃几天?分析:一般把1头牛每天的吃草量看作每份数,那么15头牛吃10天,其中就有草地上原有的草,加上这片草地10天长出草,以下类推其中可以发现25头牛5天的吃草量比15头牛10天的吃草量要少。原因是因为其一,用的时间少;其二,对应的长出来的草也少。这个差就是这片草地5天长出来的草。每
20、天长出来的草可供5头牛吃一天。如此当供10牛吃时,拿出5头牛专门吃每天长出来的草,余下的牛吃草地上原有的草。(1510255)(105)(150125)(105)2555(头)可供5头牛吃一天。 15010515050100(头)草地上原有的草可供100头牛吃一天 100(105)100520(天)答:若供10头牛吃,可以吃20天。例2、一口井匀速往上涌水,用4部抽水机100分钟可以抽干;若用6部同样的抽水机则50分钟可以抽干。现在用7部同样的抽水机,多少分钟可以抽干这口井里的水?(1004506)(10050)(400300)(10050)1005024001002400200200 200(72)200540(分)答:用7部同样的抽水机,40分钟可以抽干这口井里的水。七、相遇问题相遇路程速度和相遇时间相遇时间相遇路程速度和速度和相遇路程相遇时间八、追及问题追及距离速度差追及时间追及时间追及距离速度差速度差追及距离追及时间十、流水问题顺流速度静水速度水流速度逆流速度静水速度水流速度静水速度(顺流速度逆流速度)2水流速度(顺流速度逆流速度)2