《(广东专用)2014高考数学第一轮复习用书 第56课 立体几何中的翻折问题 文.doc》由会员分享,可在线阅读,更多相关《(广东专用)2014高考数学第一轮复习用书 第56课 立体几何中的翻折问题 文.doc(4页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、第56课 立体几何中的翻折问题 1.(2012东城一模)如图,在边长为的正三角形中,分别为,上的点,且满足.将沿折起到的位置,使平面平面,连结,.(如图)(1)若为中点,求证:平面;(2)求证:. 证明:(1)取中点,连结在中,分别为的中点, ,且 , ,且, ,且 四边形为平行四边形, 又平面,且平面, 平面 (2) 取中点,连结.,而,即是正三角形. 又, . 在图2中有. 平面平面,平面平面,平面. 又平面,. 2(2012海淀一模)已知菱形中, (如图1所示),将菱形沿对角线翻折,使点翻折到点的位置(如图2所示),点,分别是,的中点(1)证明: /平面;(2)证明:;(3)当时,求线段
2、的长证明:(1)点分别是的中点, 又平面,平面, 平面 (2)在菱形中,设为的交点, 则 在三棱锥中,.又 平面 又平面,(3)连结在菱形中, 是等边三角形, 为中点, 又 , 平面,即平面 又 平面, , 3(2012汕头二模)如图,在边长为4的菱形中,点、分别在边、上点与点、不重合,沿将翻折到的位置,使平面平面(1)求证:平面;(2)记三棱锥的体积为,四棱锥的体积为,且,求此时线段的长【解析】(1)证明:在菱形中, , 平面平面,平面平面,且平面,平面, 平面,平面(2)设由(1)知,平面, 为三棱锥及四棱锥的高, , , , , 4(2012西城一模)如图,矩形中,分别在线段和上,将矩形沿折起记折起后的矩形为,且平面平面(1)求证:平面;(2)若,求证:; (3)求四面体体积的最大值【解析】(1)证明:四边形,都是矩形, , 四边形是平行四边形, , 平面, 平面(2)证明:设平面平面,且, 平面, 又 , 四边形为正方形, 平面, (3)设,则,其中由(1)得平面,四面体的体积为 当且仅当,即时,取等号,时,四面体的体积最大 4