《第三章导数的应用PPT讲稿.ppt》由会员分享,可在线阅读,更多相关《第三章导数的应用PPT讲稿.ppt(29页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、第三章 导数的应用第1页,共29页,编辑于2022年,星期二(一一)本章内容小结本章内容小结一、内容提要一、内容提要1、拉格朗日中值定理及特例,定理的几何解释。2、一阶导数的符号和曲线单调性的关系。3、极值存在的必要条件及利用一阶导数或二阶导数判断极值。4、求函数在闭区间上最大值和最小值,求最值应用题。5、利用二阶导数研究曲线凸凹性和拐点,拐点存在必要条件 及判定。6、利用导数作图。7、利用洛必达法则,求未定式极限。*8、曲率公式,弧长的微分公式。第2页,共29页,编辑于2022年,星期二二、重点和难点二、重点和难点 中值定理的应用:曲线的单调性与极值,曲线的凸凹性与拐点及未定式极限为重点,函
2、数的作图是本章难点。三、基本要求三、基本要求1、拉格朗日定理是利用导数来研究函数的性质的理论基础,必须熟记定理的条件和结论及几何意义。2、熟练应用一阶导数,判断曲线的增减性,牢固掌握极值存在的必要条件,运用一阶导数和二阶导数来判定极值。清楚极值与最值的联系与区别。3、清楚二阶导数的几何意义,利用二阶导数判定曲线凸凹性及求拐点。第3页,共29页,编辑于2022年,星期二5、能正确掌握利用一阶导数和二阶导数研究曲线的性态并能正确做出常见的初等函数图像。四、对学习的建议四、对学习的建议 拉格朗日中值定理是利用导数研究函数的性质的基础理论,因而十分重要,必须弄清它的条件与结论以及几何意义。定理的证明只
3、要求理解。洛必达法则是求极限的一个有力工具,在应用中须注意以下几点。第4页,共29页,编辑于2022年,星期二2、使用法则前,函数中若有因式可用无穷小代换,则代换,以便简化计算。3、使用法则后,若有因式其极限可以确定,则应及时剥离求出极限,以利继续使用法则。4、使用洛必达法则中,在适当的环节上可结合其他求极限的方法,以便极限较快求出。另外,法则有时会失效,但不能因此确定函数无极限,可另换他法。结合实际求最值问题,关键在目标函数的建立,这需要一定的其他领域的知识。目标函数建立的恰当与否,取决于自变量的选取。这一切都需要多做多看一些不同类型的题目,以便培养这方面的能力。第5页,共29页,编辑于20
4、22年,星期二 导数在经济问题中的应用,关键在熟悉和掌握各种概念的含义以及它的数学表达式。五、本章关键词五、本章关键词中值定理极值最大值与最小值洛必达法则 作函数的图形是本章内容的大综合,也是本章一个难点。正因为如此,认真的按照规范的步骤做几道作图题,对融会贯通本章知识,了解函数性态,提高作图能力等都是有益的。第6页,共29页,编辑于2022年,星期二(二二)常见问题分类及解法常见问题分类及解法一、利用洛必达法则求未定式一、利用洛必达法则求未定式第7页,共29页,编辑于2022年,星期二例例1 1 求下列极限:解解第8页,共29页,编辑于2022年,星期二第9页,共29页,编辑于2022年,星
5、期二二、利用导数判断函数的单调性并求其极值二、利用导数判断函数的单调性并求其极值 函数在某区间内的单调性可以用此函数的一阶导数的正负来判定,进而可以求出函数在其定义域内的极大值和极小值。需注意的是:有些导数不存在的点也可能是极值点;在单调区间内的某些离散点处导数也可能为零。例例2 2 求函数的单调区间并求其极值:解解第10页,共29页,编辑于2022年,星期二见表3-1.表 3-1 极值表第11页,共29页,编辑于2022年,星期二见表3-2.第12页,共29页,编辑于2022年,星期二不存在极小值0极小值0表 3-2 极值表第13页,共29页,编辑于2022年,星期二三、求函数的最大值和最小
6、值三、求函数的最大值和最小值 对于由解析式表示的连续函数在闭区间上的最大值和最小值问题,可利用比较函数在驻点和不可导点及区间端点处的函数值的大小来求。而对于由实际问题得到的函数的最值问题,只要函数在某区间内只有一个驻点,则可以肯定函数在此驻点处取得最值。第14页,共29页,编辑于2022年,星期二解解第15页,共29页,编辑于2022年,星期二例例4 4 欲用围墙围成面积为 216 m2 的一块矩形土地,并在正中用一堵墙将其隔成两块,问这块土地的长和宽选取多大的尺寸,才能使所用建筑材料最省?解解图 3-1 例4 示意第16页,共29页,编辑于2022年,星期二四、判断曲线的凸凹并求曲线的拐点四
7、、判断曲线的凸凹并求曲线的拐点 根据函数二阶导数在某区间内的正负,可以判断函数曲线的凸凹,进而可以求出函数曲线在整个定义域内的拐点。解解第17页,共29页,编辑于2022年,星期二凹拐点(0,1)凸拐点(1,0)凹表 3-3 曲线凸凹表第18页,共29页,编辑于2022年,星期二 五、利用函数的单调性证明不等式五、利用函数的单调性证明不等式 对于某些不等式,可以先将其转化为一个函数,再利用函数的单调性证明不等式。证证第19页,共29页,编辑于2022年,星期二(三三)思考题思考题答答 案案答答 案案答答 案案答答 案案1、一阶导数的符号与曲线单调性的关系是什么?2、利用一、二阶导数能研究曲线的
8、什么特性?第20页,共29页,编辑于2022年,星期二(四四)课堂练习题课堂练习题答答 案案答答 案案答答 案案答答 案案第21页,共29页,编辑于2022年,星期二返返 回回1、一阶导数的符号为正号,曲线单调增加;一阶导数的符号 为负号,曲线单调减少.第22页,共29页,编辑于2022年,星期二返返 回回2、利用一阶导数可研究曲线的单调性进而来判定极值.利用二阶导数可研究曲线的凸凹性和拐点.第23页,共29页,编辑于2022年,星期二返返 回回第24页,共29页,编辑于2022年,星期二返返 回回第25页,共29页,编辑于2022年,星期二返返 回回第26页,共29页,编辑于2022年,星期二返返 回回第27页,共29页,编辑于2022年,星期二返返 回回第28页,共29页,编辑于2022年,星期二返返 回回第29页,共29页,编辑于2022年,星期二