数值计算课后答案解析4.doc

上传人:一*** 文档编号:4541898 上传时间:2021-09-28 格式:DOC 页数:28 大小:1.08MB
返回 下载 相关 举报
数值计算课后答案解析4.doc_第1页
第1页 / 共28页
数值计算课后答案解析4.doc_第2页
第2页 / 共28页
点击查看更多>>
资源描述

《数值计算课后答案解析4.doc》由会员分享,可在线阅读,更多相关《数值计算课后答案解析4.doc(28页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、,习 题 四 解 答1、设,写出的一次插值多项式,并估计插值误差。解:根据已知条件,有x01y1设插值函数为,由插值条件,建立线性方程组为解之得则因为所以,插值余项为所以。2、给定函数表-0.10.30.71.10.9950.9950.7650.454选用合适的三次插值多项式来近似计算f(0.2)和f(0.8)。解:设三次插值多项式为,由插值条件,建立方程组为即解之得则所求的三次多项式为。所以3、设是 n+1个互异节点,证明:(1);(2)。证明: (1)由拉格朗日插值定理,以x0,x1,x2,xn为插值节点,对y=f(x)=xk作n次插值,插值多项式为 ,而yi=xik,所以同时,插值余项所

2、以结论得证。(2)取函数对此函数取节点,则对应的插值多项式为,由余项公式,得所以令t=x,4、给定数据()x2.02.12.22.4f(x)1.4142141.4491381.483201.54919 (1)试用线性插值计算f(2.3)的近似值,并估计误差;(2)试用二次Newton插值多项式计算f(2.15)的近似值,并估计误差。解:用线性插值计算f(2.3),取插值节点为2.2和2.4,则相应的线性插值多项式是用x=2.3代入,得(2) 作差商表如下xf(x)一阶差商二阶差商三阶差商2.01.4142140.35012.11.449138-0.0470.34074.10752.21.483

3、201.5960.65992.41.54919根据定理2,f(x)f(x0)fx0,x1(x-x0)+fx0,x1,x2(x-x0)(x-x1)+fx0,x1,xn(x-x0)(x-x1)(x-xn1)+fx0,x1,xn,x(x) 。 以表中的上方一斜行中的数为系数,得f(2.15)1.414210.3501 (2.15-2.0)0.047 (2.15-2.0) (2.15-2.1) 1.663725指出:误差未讨论。5、给定函数表x01245y01646880试求各阶差商,并写出牛顿插值多项式和插值余项。解:作差商表如下xf(x)一阶差商二阶差商三阶差商四阶差商00161167302463

4、214888850根据定理2,以表中的上方一斜行中的数为系数,得。指出:余项未讨论。5*、给定函数表x01234y01646880试求各阶差分,并求等距节点插值。解:由已知条件,显然,x0=0,h=1,x=t。作差分如下xf(x)一阶差分二阶差分三阶差分四阶差分00161161430224612140421424881308850根据等距节点插值公式,指出:在本题这种情况下,实际上,也就是说,在这样的条件下,t的多项式就是x的多项式,可以直接转换。一般情况下,把t的关系转换为x的关系需要根据x=x0+th,将t用x表示,即将代入得到的多项式。6、给定数据表x0.1250.2500.3750.5

5、000.6250.750f(x)0.796180.773340.743710.704130.656320.60228试用三次牛顿差分插值公式计算f(0.1581)及f(0.636)。解:所给节点是等距结点:。计算差分得xf(x)一阶差分二阶差分三阶差分四阶差分五阶差分0125079618-0.022840250077334-0.00679-0.02963-0.003160375074371-0.009950.00488-0.039580.00172-0.004600500070413-0.008230.00028-0.047810.002000625065632-0.00623-0.05404

6、0750060228令,根据等距结点插值公式,得则。7、设f(x)在-4,4有连续的4阶导数,且(1)试构造一个次数最低的插值多项式p(x),使其满足 (2)给出并证明余项f(x)-p(x)的表达式。解:(1)由7*可以求出满足的三次埃尔米特插值多项式。设,则p(x)满足,由得,所以。(2)余项具有如下结构作辅助函数则显然在点处有6个零点(其中0,3是二重零点),即,不妨假设。由罗尔定理,存在,使得,再注意到,即有5个互异的零点再次由罗尔定理得,存在,使得第三次应用罗尔定理得,存在使得,第四次应用罗尔定理得,存在使得,第五次应用罗尔定理得,存在使得注意到(中p(t)是4次函数,其5次导数为0)

7、。所以,代入余项表达式,有。指出:本题是非标准插值问题,比较简单的求解方法有:求插值问题的基本方法是待定系数法。以本题来说,有5个条件,可以确定一个4次的插值多项式,设为,将条件代入,建立一个5元的线性方程组,求出各参数,就可以求出插值多项式。求插值问题的第二种方法是基函数法,即根据给定条件设定插值多项式的结构和各基函数的结构,根据条件确定基函数即可。具体方法与拉格朗日插值基函数构造和埃尔米特插值基函数构造相似。以标准插值为基础的方法是一种更简单的方法,本题中,首先利用4个条件构造一个埃尔米特插值,在此基础上设定所求插值多项式的一般形式,保证其满足埃尔米特插值条件,代入未利用条件解方程(组),

8、求出其中的未知参数,即可求出插值多项式。本题也可以先利用构造一个2次插值多项式,以此为基础构造4次插值多项式,的结构是,满足再根据列出两个线性方程组成的方程组,求出a、b两个参数,即可求出所求的插值多项式。求插值函数余项的常用方法是:应具有如下形式(以本题为例)作辅助函数则在点处有6个零点(其中0,3是二重零点)。反复应用罗尔定理,直到至少有一个,使得。此时即有代入余项表达式即可求出。7*、设f(x)在-4,4有连续的4阶导数,且试用两种方法构造三次埃尔米特插值多项式H(x),使其满足。解一(待定系数法):解:设,则,由插值条件得解之得,所以。解二(基函数法):解:设,因为线性拉格朗日插值基函

9、数为,由得同理由得则。8、设,试作一个二次多项式p(x),使其满足,并导出余项估计式。解:设此二次式为,因为,所以,由已知条件将其代入,得所以,要求的二次多项式为。因为0是2重零点,1是1重零点,因此可以设余项具有如下形式:,其中K(x)为待定函数。固定x,作辅助函数显然,不妨假设。由罗尔定理,存在,使得,再注意到再次由罗尔定理得,存在,使得再次应用罗尔定理,存在使得。注意到(中p(t)是2次函数,其3次导数为0)。所以,代入余项表达式,有。指出:石瑞民数值计算关于余项讨论很清楚。9、给出sinx在0,上的等距结点函数表,用线性插值计算sinx的近似值,使其截断误差为,问该函数表的步长h取多少

10、才能满足要求?解:设为等距结点,步长为h,则当时,作f(x)的线性插值则有,由此易知因此由,得。指出:关于最大值的计算与12题相同。10、求在区间a,b上的分段埃尔米特插值,并估计误差。解:由分段三次埃尔米特插值多项式则的分段埃尔米特插值为其中其余项估计式为。11、已知数据表i0122.57.5104.07.05.00.13-0.13求三次样条插值函数。解:这是第一类边界条件,要求解方程组其中将以上数据代入方程组解之得将获得的数据代入到中,得12、设(具有二阶连续导数),且f(a)=f(b)=0,证明:证明:以a、b为节点进行插值,得因为在处取得最大值,故13.给定数据表x21012y01用两

11、种方法求其二次拟合曲线。解一:设所求的拟合函数为,则。对a、b、c分别求偏导,并令偏导数等于0,得将各数据点的数值代入,得方程组为 解之得a=0.4086,b=0。42,c=0.0857,所以数据点所反映的函数的近似关系为解二:设所求的拟合函数为,将数据代入方程得方程组的系数矩阵和右端向量为因为所以解之得a=0.4086,b=0。42,c=0.0857,所以数据点所反映的函数的近似关系为14、已知试验数据x1925313844y190323490733978用最小二乘法求形如的经验公式,并计算均方误差。解:设则对a、b分别求偏导,并令偏导数等于0,得将数据代入得化简得第二个方程减去第一个方程乘

12、以1065进一步化简得解之得则x与y的函数关系是y=1.01+0.05x2。此时,平方逼近误差为所以,均方误差为。指出:均方误差实际上就是按最小二乘法则确定的残差。15、观测物体的直线运动,得出如下数据:时间t(s)00.91.93.03.95.0距离s(m)010305080110求运动方程。解:设运动方程为sa+bt则 将上述数据代入方程组得方程组解之得所以,。指出:利用统计型计算器,有关中间数据可以简单求出。16、在某化学反应中,由实验得分解物浓度与时间关系如下:时间t05101520253035浓度01.272.162.863.443.874.154.37时间t40455055浓度4.

13、514.584.624.64用最小二乘法求y=f(t)。解:描草图,观察草图可以发现,该组数据分布近似于指数函数曲线,而且随着t的增大,y的增速放缓,故设。两边取对数,得,令,则拟合函数转化为线性拟合关系。将上述数据代入得解之得所以。指出:(1)T=0,该拟合函数不适用。(2)专业的变化规律(经验函数)应当由专业人员给出。仅仅从有限数据的草图得出的规律可能不具普遍性。17、给定数据表x7.22.73.54.14.8y6560535046用最小二乘法求形如的经验公式。解:对两边取对数,得,令,则,代入数据,建立方程组为解之得所以。18、用最小二乘法求方程组的近似解。分析:这是方程个数多于未知数个

14、数的超定方程组,是矛盾方程组,用最小二乘法求解。解:设方程组中各个方程的一般形式为,则对x、y分别求偏导,并令偏导数等于0,得将数据代入得解之得19、已知数据表x12345678y15.320.527.436.649.165.687.8117.6它有形如的拟合函数,试求本问题的最小二乘解。解:令,则拟合函数变形为,原拟合问题转化为线性拟合问题。则。对a、b分别求偏导,并令偏导数等于0,得将数据代入,得解之得所以,所求的拟合函数为。20、在平面上给出三个点,它们的坐标是,每个点对应一个函数值,找出一个通过这三个点的平面。解:这实际上是求过三个点的平面方程。由解析几何知识可知,平面的三点式方程为将

15、三点坐标代入,解此方程就可求出所求平面方程。(以下从略)补充题(一)1、求次数不超过2和3的多项式p2(x)和p3(x)。使得p2(0)p3(0)0,p2(1)p3(1)1,p2(2)p3(2)8,p3(3)27。解一:设二次多项式为p2(x)=a0+a1x+a2x2 ,则有解之得,。所以。设三次多项式为p3(x)=a0+a1x+a2x2a3x3 ,则有解之得,。所以。解二:由题6,可以直接利用插值多项式公式求出所要求的多项式来。解三:在学习了差商和差分后,也可以利用牛顿插值公式或等距节点插值公式求出所求多项式。对f(x)在0,1,2,3处求差商得xf(x)一阶差商二阶差商三阶差商001113

16、7128619327所以,p2(x)=p2(0)+1(x-0)+3(x-0)(x-1)=3x2-2x,p3(x)=p3(0)+1(x-0)+3(x-0)(x-1)+1(x-0)(x-1)(x-2)=x3。2、已知函数f(x)在节点1,0,1处的值分别是0.3679,1.000,2.7182,用待定系数法和插值基函数法两种方法求出拉格朗日插值。解1:设所求的多项式为,把已知条件代入得解之得所以。解2:由插值基函数公式代入插值公式得即。3、设f(x)=x4,试利用拉格朗日插值余项定理写出以1,0,1,2为插值节点的三次插值多项式。解:记三次插值多项式为p(x),由插值余项定理 所以, 思考:用插值

17、多项式公式直接求插值多项式与本题求出的多项式比较一下。4、已知sin0.32=0.314 567,sin0.34=0.333 487,sin0.36=0.352 274,用抛物线插值计算sin0.3367。解:sin0.33670.330 374。5、设lk(x)(k=0,1,2,n)是n+1个互异节点x0,x1,x3,xn上的n次基本插值多项式,证明下面的恒等式成立证明: 由拉格朗日插值定理,以x0,x1,x2,xn为插值节点,对y=f(x)=xm作n次插值,插值多项式为 ,而yi=xim,所以 同时,插值余项所以结论得证。指出:本题说明,任何次数不超过n的多项式的n次拉格朗日插值多项式就是

18、它本身。我们也可以证明:。6、设x0,x1,x2,xn是任意给定的n+1个互异节点,证明 f(x)=a0+a1x+anxn关于这组节点的n次插值多项式pn(x)就是f(x)。证明:记n次插值多项式为pn(x),由插值余项定理所以。补充题(二)1、令,写出的一次插值多项式,并估计误差。2、已知求 并估计误差。3、证明对任意的,都有,其中定义为4、(a)设有多项式,取插值节点为2,1,0,1,2,试求f(x)的拉格朗日插值多项式,它与f(x)关系如何。(b) 表示函数f(x)在互异节点上的n次拉格朗日插值多项式。证明如果f(x)是次多项式,则。5、设(具有二阶连续导数),且f(a)=f(b)=0,

19、证明:6、以0.1,0.15,0.2为插值节点,计算的二次拉格朗日插值多项式,比较与f(x),看上题结果是否适用于本题。分析与解答1、解:记,则。由线性插值公式,的以为插值节点的一次插值多项式为。因为所以,插值余项为所以。2、解:将已知的插值条件代入抛物线插值多项式得 10.7228记,显然,因为所以3、分析:关于插值基函数的性质的证明,在考虑证明方法时,应该从对函数进行插值入手,通过耐心地推证或巧妙地选取被插值函数,获得所需要的结论。由拉格朗日插值多项式的结构,本题的被插值函数显然应当取为f(x)=1。证明:由拉格朗日插值定理,以x0,x1,x2,xn为插值节点,对作n次插值,插值多项式为

20、,而yi=1所以 同时,插值余项所以结论得证。4、(a)解:由得所以可见,求出的插值多项式就是被插值函数本身。指出:可以用余项定理直接求。(b)证明:记n次插值多项式为,由插值余项定理所以。5、分析:本题要证的结论是与的关系,而用泰勒展开的方法难以奏效。因为用泰勒展开,不外乎在a,b或者使得的点处展开,但这些点处的展开式都不能直接得到与的关系式。在本节我们讨论多项式插值问题,而且又有条件f(a)=f(b)=0,容易想到,如果用线性插值,线性插值函数只能为0,且误差为,直接把与联系起来,有可能得出结果。证明:以a、b为节点进行插值,得因为在处取得最大值,故得证。6、解:由得下略。实际上本题错误,因为0.15不能开平方,即求不出。因本题是课本原题,故进行上述分析。

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 教案示例

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁