高级中学平面向量知识点归纳.doc

上传人:一*** 文档编号:4531245 上传时间:2021-09-27 格式:DOC 页数:12 大小:305.80KB
返回 下载 相关 举报
高级中学平面向量知识点归纳.doc_第1页
第1页 / 共12页
高级中学平面向量知识点归纳.doc_第2页
第2页 / 共12页
点击查看更多>>
资源描述

《高级中学平面向量知识点归纳.doc》由会员分享,可在线阅读,更多相关《高级中学平面向量知识点归纳.doc(12页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、,平面向量1、 向量的定义:既有大小又有方向的量叫向量2、 向量的表示方法 (1)几何表示:以A为起点,以B为终点的有向线段记作,如果有向线段表示一个向量,通常我们就说向量. (2)字母表示:印刷时 粗黑体字母 a, b, c向量 手写时 带箭头的小写字母 ,3、向量点的长度(模)向量的大小叫做向量的长或模,记作|、 4、零向量:长度为0的向量,记为,其方向是任意的,与任意向量平行 0单位向量:模为1个单位长度的向量 向量为单位向量1 平行向量(共线向量):方向相同或相反的非零向量称为平行向量,也叫共线向量 记作5、相等向量:长度相等且方向相同的向量 相等向量经过平移后总可以重合,记为即大小相

2、等,方向相同6、 对于任意非零向量的单位向量是 .7、向量的加法(1)三角形法则 设,则+=对于零向量与任意向量的和有 (2)平行四边形法则已知两个不共线的向量,做,则A、B、D三点不共线,以AB、AD为邻边作平行四边形ABCD,则对角线上的向量=+.当两个向量的起点公共时,用平行四边形法则;当两向量是首尾连接时,用三角形法则向量加法的三角形法则可推广至多个向量相加:,但这时必须“首尾相连”8、向量加法的运算律(1)交换律 +=+(2)结合律 (a+b)+c=a+(b+c)9、向量的减法 即减去一个向量相当于加上这个向量的相反向量 图:10、相反向量:与长度相等、方向相反的向量,叫做的相反向量

3、. 记作 (1)=,即与互为相反向量;(2)若、是互为相反向量,则=,=,+=;(3)+()=()+=;(4)零向量的相反向量仍是零向量(5)对于用起点和终点表示的向量,则有= BA,即和- BA互为相反向量11、已知向量,b,则| |-|b| |b| b|12、向量数乘运算 实数与向量的积是一个向量,记作,它的长度与方向规定如下:(1);(2)当时, 与同向当时, 与异向当或=时,方向是任意的13、向量数乘的运算律(1) () =()(2)(+) =+(3)(+)=+(4)()= ()=() ()=-14、向量共线判定定理 当向量,对于向量,如果有一个实数,使=,那么 共线. 向量与向量()

4、共线有且只有一个实数,使得=.15、向量的加、减、数乘运算统称为向量的线性运算,对于任意向量、以及任意实数、1 、2 恒有(12)=1+216、平面向量的基本定理 如果是一个平面内的两个不共线向量,那么对这一平面内的任一向量,有且只有一对实数使:,其中不共线的向量叫做表示这一平面内所有向量的一组基底17、 两向量夹角范围0180 =0 同向图 =180 同向=90 垂直,记为18、平面向量的正交分解把一个向量分解成两个互相垂直的向量19、平面向量的坐标表示 (1)直角坐标 在平面直角坐标系中,分别取与x轴、y轴方向相同的两个单位向量i,j作为基底,对于平面内的的一个向量,由平面向量基本定理知,

5、有且只有一对实数x,y使=x i+y j,则把有序数对(x,y)叫做向量的坐标。 (2)坐标表示 在向量的直角坐标中,x叫做在x轴上的坐标,y叫做在y轴上的坐标,=(x,y)叫做向量的坐标表示。 (3)在向量的直角坐标中,i=(1,0) j=(0,1) =(0,0)20、若和实数 (1) (2) =(x1, y1)(3) 若,则=OB-OA=(x2,y2)-(x1,y1)=(x2-x1, y2-y1)21、向量平行条件(1)若,(2)若,如果不平行于坐标轴,即x20 y20 ,则/x1x2=y1y2 即两个向量平行的条件是成比例(注意此时x2y20) 22、向量的数量积 已知两个非零向量与,它

6、们的夹角为,则=cos其中是与的夹角,cos叫做向量在方向上的投影。 规定23、数量积的几何意义 等于的长度与在方向上的投影cos的乘积24、与都是非零向量,它们的夹角为 (1) = 0 (2)同向时 = 反向时 = (3) 或=2(4)cos=(5)|25、向量数量积的运算律 (1)交换律:(2)结合律:(3)分配律:特别注意:(1)结合律不成立: why? 前者表示与共线的向量,后者表示与向量c共线的向量,而与c不一定共线。(2)消去律不成立不能得到(3)=0不能得到=或= 26、平面向量的数量积的坐标运算: 已知两个向量,则=27、垂直 设两个非零向量, 则 O28、设=(x,y),则=

7、x2+y2设A=(x1,y1) B=(x2,y2),则=(x2-x1)2+( y2-y1)229、已知两个非零向量与,作=, =,则AOB= ()叫做向量与的夹角cos= (可用此公式求两向量夹角)当0,0,2);当=0,=2当且仅当两个非零向量与同方向时,=00,当且仅当与反方向时=180030、向量的单位向量的坐标表示 0=(x,y)1x2+y2=xx2+y2+ yx2+y20 为的单位向量31、对于求直线L1:A1 x+B1y+C1=0 与直线L2:A2 x+B2y+C2=0 的夹角,则只要求与两直线平行的向量的夹角,再取这两个向量的夹角或补角,即与直线L1 、L2分别平行的向量m=(A

8、1,B1),n=(A2,B2),设向量m、 n的夹角为cos=mnm n=A1A2+B1B2A12+B12B12+B22当cos0 时,直线L1 L2夹角等于 32、三角形面积公式S=12absinC 可利用夹角公式求出sinC33、2=| () ()2=|2=|22+|234、证三点共线35、直线L的向量参数方程式 运用2.2的例一设A、B 是直线L上任意两点,O是L外一点,则对于L上任一点P,存在实数t,是向量OP=(1-t)OA+tOB 当t=12时,即P为AB中点时,OP=12(OA+OB) 正弦定理在ABC中,角A、B、C所对的边长分别为a、b、c,三角形外接圆的半径为R。则有即,在一个三角形中,各边和它所对角的正弦之比相等,该比值等于该三角形外接圆的直径长度。定理变形(3)相关结论:余弦定理如上图所示,ABC,余弦定理可表示为:同理,也可描述为:三角形面积1.海伦公式:解释:假设有一个三角形,边长分别为 ,三角形的面积S可由以上公式求得,而公式里的p为半周长。2. ,R为外接圆半径

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 教案示例

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁