《江苏版2018年高考数学一轮复习专题9.3圆的方程测.doc》由会员分享,可在线阅读,更多相关《江苏版2018年高考数学一轮复习专题9.3圆的方程测.doc(4页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、专题9.3 圆的方程一、填空题1方程y表示的曲线是_【解析】由方程可得x2y21(y0),即此曲线为圆x2y21的上半圆2圆(x2)2y25关于原点(0,0)对称的圆的方程为_【解析】因为所求圆的圆心与圆(x2)2y25的圆心(2,0)关于原点(0,0)对称,所以所求圆的圆心为(2,0),半径为,故所求圆的方程为(x2)2y25.3已知圆C与直线yx及xy40都相切,圆心在直线yx上,则圆C的方程为_4已知点M是直线3x4y20上的动点,点N为圆(x1)2(y1)21上的动点,则|MN|的最小值是_【解析】圆心(1,1)到点M的距离的最小值为点(1,1)到直线的距离d,故点N到点M的距离的最小
2、值为d1. 5已知圆C:(x3)2(y4)21和两点A(m,0),B(m,0)(m0)若圆C 上存在点P,使得 APB90,则 m的最大值为_【解析】根据题意,画出示意图,如图所示,则圆心C的坐标为(3,4),半径r1,且|AB|2m,因为APB90,连接OP,易知|OP|AB|m.要求m的最大值,即求圆C上的点P到原点O的最大距离因为|OC| 5,所以|OP|max|OC|r6,即m 的最大值为6.6已知圆C1:(x2)2(y3)21,圆C2:(x3)2(y4)29,M,N分别是圆C1,C2上的动点,P为x轴上的动点,则|PM|PN|的最小值为_【解析】圆C1,C2的图象如图所示设P是x轴上
3、任意一点,则|PM|的最小值为|PC1|1,同理|PN|的最小值为|PC2|3,则|PM|PN|的最小值为|PC1|PC2|4.作C1关于x轴的对称点C1(2,3),连接C1C2,与x轴交于点P,连接PC1,可知|PC1|PC2|的最小值为|C1C2|5,则|PM|PN|的最小值为54.7在平面直角坐标系内,若曲线C:x2y22ax4ay5a240上所有的点均在第四象限内,则实数a的取值范围为_【答案】(,2)【解析】圆C的标准方程为(xa)2(y2a)24,所以圆心为(a,2a),半径r2,故由题意知解得a0,b0)关于直线xy10对称,则ab的最大值是_【答案】【解析】由圆x2y24ax2
4、byb20(a0,b0)关于直线xy10对称,可得圆心(2a,b)在直线xy10上,故有2ab10,即2ab12,解得ab,故ab的最大值为.10已知圆C关于y轴对称,经过点(1,0)且被x轴分成两段,弧长比为12,则圆C的方程为 _.【答案】x22【解析】由已知圆心在y轴上,且被x轴所分劣弧所对圆心角为,设圆心(0,a), 半径为r,则rsin1,rcos|a|,解得r,即r2,|a|,即a,故圆C的方程为x22. 二、解答题11已知圆C和直线x6y100相切于点(4,1),且经过点(9,6),求圆C的方程12已知圆C过点P(1,1),且与圆M:(x2)2(y2)2r2(r0)关于直线xy20对称(1)求圆C的方程;(2)设Q为圆C上的一个动点,求的最小值解:(1)设圆心C(a,b),由已知得M(2,2),则解得则圆C的方程为x2y2r2,将点P的坐标代入得r22,故圆C的方程为x2y22.(2)设Q(x,y),则x2y22,(x1,y1)(x2,y2)x2y2xy4xy2.4