北师大版数学八学年上册知识点归纳.doc

上传人:一*** 文档编号:4521534 上传时间:2021-09-26 格式:DOC 页数:10 大小:196.53KB
返回 下载 相关 举报
北师大版数学八学年上册知识点归纳.doc_第1页
第1页 / 共10页
北师大版数学八学年上册知识点归纳.doc_第2页
第2页 / 共10页
点击查看更多>>
资源描述

《北师大版数学八学年上册知识点归纳.doc》由会员分享,可在线阅读,更多相关《北师大版数学八学年上册知识点归纳.doc(10页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、,北师大版八年级上册数学知识点总结第一章勾股定理1、勾股定理(1)直角三角形两直角边a,b的平方和等于斜边c的平方,即(2) 勾股定理的验证:测量、数格子、拼图法、面积法,如青朱出入图、五巧板、玄 图、总统证法(通过面积的不同表示方法得到验证,也叫等面积法或等积法)(3)勾股定理的适用范围:仅限于直角三角形2、勾股定理的逆定理:如果三角形的三边长a,b,c有关系,那么这个三角形是直角三角形。3、 勾股数:满足的三个正整数,称为勾股数。 常见的勾股数有:(6,8,10)(3,4,5)(5,12,,13)(9,12,15)(7,24,25)(9,40,41)4、 勾股数的规律: (1),短直角边为

2、奇数,另一条直角边与斜边是两个连续的自然数, 两边之和是短直角边的平方。即当a为奇数且ab时,如果b+c=a2, 那么a,b,c 就是一组勾股数.如(3,4,5)(5,12,,13)(7,24,25)(9,40,41) (2)大于2的任意偶数,2n(n1)都可构成一组勾股数分别是:2n,n2-1,n2+1如: (6,8,10)(8,15,17)(10,24,26)实数一、实数的概念及分类 1、实数的分类 正有理数 有理数 零 有限小数和无限循环小数实数 负有理数 正无理数 无理数 无限不循环小数 负无理数2、无理数:无限不循环小数叫做无理数。在理解无理数时,要抓住“无限不循环”这一时之,归纳起

3、来有四类:(1)开方开不尽的数,如等;(2)有特定意义的数,如圆周率,或化简后含有的数,如+8等;(3)有特定结构的数,如0.1010010001等;(4)某些三角函数值,如sin60o等二、实数的倒数、相反数和绝对值 1、相反数:实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a与b互为相反数,则有a+b=0,a=b,反之亦成立。2、绝对值:在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值。(|a|0)。零的绝对值是它本身,也可看成它的相反数,若|a|=a,则a0;若|a|=-a,则a0。3、倒

4、数:如果a与b互为倒数,则有ab=1,反之亦成立。倒数等于本身的数是1和-1。零没有倒数。4、数轴:规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用。5、估算三、平方根、算数平方根和立方根 1、算术平方根:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x就叫做a的算术平方根。特别地,0的算术平方根是0。表示方法:记作“”,读作根号a。性质:正数和零的算术平方根都只有一个,零的算术平方根是零。2、平方根:一般地,如果一个数x的平方等于a,即x2=a,那么这个数x就叫做

5、a的平方根(或二次方根)。表示方法:正数a的平方根记做“”,读作“正、负根号a”。性质:一个正数有两个平方根,它们互为相反数;零的平方根是零;负数没有平方根。开平方:求一个数a的平方根的运算,叫做开平方。 注意的双重非负性: 03、立方根一般地,如果一个数x的立方等于a,即x3=a那么这个数x就叫做a 的立方根(或三次方根)。表示方法:记作性质:一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。注意:,这说明三次根号内的负号可以移到根号外面。四、实数大小的比较 1、实数比较大小:正数大于零,负数小于零,正数大于一切负数;数轴上的两个点所表示的数,右边的总比左边的大;两个负数,

6、绝对值大的反而小。2、实数大小比较的几种常用方法(1)数轴比较:在数轴上表示的两个数,右边的数总比左边的数大。(2)求差比较:设a、b是实数,(3)求商比较法:设a、b是两正实数,(4)绝对值比较法:设a、b是两负实数,则。(5)平方法:设a、b是两负实数,则。五、算术平方根有关计算(二次根式)1、含有二次根号“”;被开方数a必须是非负数。2、性质:(1) (2) (3) ()(4) ()3、运算结果若含有“”形式,必须满足:(1)被开方数的因数是整数,因式是整式;(2)被开方数中不含能开得尽方的因数或因式六、实数的运算 (1)六种运算:加、减、乘、除、乘方 、开方(2)实数的运算顺序先算乘方

7、和开方,再算乘除,最后算加减,如果有括号,就先算括号里面的。(3)运算律加法交换律 加法结合律 乘法交换律 乘法结合律 乘法对加法的分配律 第一章 位置的确定一、 在平面内,确定物体的位置一般需要两个数据。二、平面直角坐标系及有关概念 1、平面直角坐标系在平面内,两条互相垂直且有公共原点的数轴,组成平面直角坐标系。其中,水平的数轴叫做x轴或横轴,取向右为正方向;铅直的数轴叫做y轴或纵轴,取向上为正方向;x轴和y轴统称坐标轴。它们的公共原点O称为直角坐标系的原点;建立了直角坐标系的平面,叫做坐标平面。2、为了便于描述坐标平面内点的位置,把坐标平面被x轴和y轴分割而成的四个部分,分别叫做第一象限、

8、第二象限、第三象限、第四象限。注意:x轴和y轴上的点(坐标轴上的点),不属于任何一个象限。3、点的坐标的概念对于平面内任意一点P,过点P分别x轴、y轴向作垂线,垂足在上x轴、y轴对应的数a,b分别叫做点P的横坐标、纵坐标,有序数对(a,b)叫做点P的坐标。点的坐标用(a,b)表示,其顺序是横坐标在前,纵坐标在后,中间有“,”分开,横、纵坐标的位置不能颠倒。平面内点的坐标是有序实数对,当时,(a,b)和(b,a)是两个不同点的坐标。平面内点的与有序实数对是一一对应的。4、不同位置的点的坐标的特征 (1)、各象限内点的坐标的特征 点P(x,y)在第一象限点P(x,y)在第二象限点P(x,y)在第三

9、象限点P(x,y)在第四象限(2)、坐标轴上的点的特征点P(x,y)在x轴上,x为任意实数点P(x,y)在y轴上,y为任意实数点P(x,y)既在x轴上,又在y轴上x,y同时为零,即点P坐标为(0,0)即原点(3)、两条坐标轴夹角平分线上点的坐标的特征点P(x,y)在第一、三象限夹角平分线(直线y=x)上x与y相等点P(x,y)在第二、四象限夹角平分线上x与y互为相反数(4)、和坐标轴平行的直线上点的坐标的特征位于平行于x轴的直线上的各点的纵坐标相同。位于平行于y轴的直线上的各点的横坐标相同。(5)、关于x轴、y轴或原点对称的点的坐标的特征点P与点p关于x轴对称横坐标相等,纵坐标互为相反数,即点

10、P(x,y)关于x轴的对称点为P(x,-y)点P与点p关于y轴对称纵坐标相等,横坐标互为相反数,即点P(x,y)关于y轴的对称点为P(-x,y)点P与点p关于原点对称横、纵坐标均互为相反数,即点P(x,y)关于原点的对称点为P(-x,-y)(6)、点到坐标轴及原点的距离点P(x,y)到坐标轴及原点的距离:(1)点P(x,y)到x轴的距离等于(2)点P(x,y)到y轴的距离等于(3)点P(x,y)到原点的距离等于三、坐标变化与图形变化的规律:坐标( x , y )的变化 图形的变化 x a或 y a 被横向或纵向拉长(压缩)为原来的 a倍 x a, y a 放大(缩小)为原来的 a倍 x ( -

11、1)或 y ( -1) 关于 y 轴或 x 轴对称 x ( -1), y ( -1) 关于原点成中心对称 x +a或 y+ a 沿 x 轴或 y 轴平移 a个单位 x +a, y+ a 沿 x 轴平移 a个单位,再沿 y 轴平移 a个单第二章 一次函数一、函数:一般地,在某一变化过程中有两个变量x与y,如果给定一个x值,相应地就确定了一个y值,那么我们称y是x的函数,其中x是自变量,y是因变量。二、自变量取值范围使函数有意义的自变量的取值的全体,叫做自变量的取值范围。一般从整式(取全体实数),分式(分母不为0)、二次根式(被开方数为非负数)、实际意义几方面考虑。三、函数的三种表示法及其优缺点(

12、1)关系式(解析)法两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做关系式(解析)法。(2)列表法把自变量x的一系列值和函数y的对应值列成一个表来表示函数关系,这种表示法叫做列表法。(3)图象法用图象表示函数关系的方法叫做图象法。四、由函数关系式画其图像的一般步骤(1)列表:列表给出自变量与函数的一些对应值(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。五、正比例函数和一次函数 1、正比例函数和一次函数的概念一般地,若两个变量x,y间的关系可以表示成(k,b为常数,k0)

13、的形式,则称y是x的一次函数(x为自变量,y为因变量)。特别地,当一次函数中的b=0时(即)(k为常数,k0),称y是x的正比例函数。2、一次函数的图像: 所有一次函数的图像都是一条直线3、一次函数、正比例函数图像的主要特征:一次函数的图像是经过点(0,b)的直线;正比例函数的图像是经过原点(0,0)的直线。k的符号b的符号函数图像图像特征k0b0 y 0 x图像经过一、二、三象限,y随x的增大而增大。b0 y 0 x图像经过一、三、四象限,y随x的增大而增大。K0 y 0 x 图像经过一、二、四象限,y随x的增大而减小b0时,图像经过第一、三象限,y随x的增大而增大;(2)当k0时,y随x的

14、增大而增大(2)当k0时,y随x的增大而减小6、正比例函数和一次函数解析式的确定确定一个正比例函数,就是要确定正比例函数定义式(k0)中的常数k。确定一个一次函数,需要确定一次函数定义式(k0)中的常数k和b。解这类问题的一般方法是待定系数法。7、一次函数与一元一次方程的关系: 任何一个一元一次方程都可转化为:kx+b=0(k、b为常数,k0)的形式 而一次函数解析式形式正是y=kx+b(k、b为常数,k0)当函数值为0时,即kx+b=0就与一元一次方程完全相同 结论:由于任何一元一次方程都可转化为kx+b=0(k、b为常数,k0)的形式所以解一元一次方程可以转化为:当一次函数值为0时,求相应

15、的自变量的值 从图象上看,这相当于已知直线y=kx+b确定它与x轴交点的横坐标值第五章、二元一次方程组1、二元一次方程含有两个未知数,并且所含未知数的项的次数都是1的整式方程叫做二元一次方程。2、二元一次方程的解适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解。3、二元一次方程组含有两个未知数的两个一次方程所组成的一组方程,叫做二元一次方程组。4二元一次方程组的解二元一次方程组中各个方程的公共解,叫做这个二元一次方程组的解。5、二元一次方程组的解法(1)代入(消元)法(2)加减(消元)法6、一次函数与二元一次方程(组)的关系:(1)一次函数与二元一次方程的关系:直线y=kx+

16、b上任意一点的坐标都是它所对应的二元一次方程kx- y+b=0的解(2)一次函数与二元一次方程组的关系:二元一次方程组 的解可看作两个一次函数 和 的图象的交点。当函数图象有交点时,说明相应的二元一次方程组有解;当函数图象(直线)平行即无交点时,说明相应的二元一次方程组无解。第六章、数据的分析1、刻画数据的集中趋势(平均水平)的量:平均数 、众数、中位数 2、平均数(1)平均数:一般地,对于n个数我们把叫做这n个数的算术平均数,简称平均数,记为。(2)加权平均数: 3、众数一组数据中出现次数最多的那个数据叫做这组数据的众数。4、中位数一般地,将一组数据按大小顺序排列,处于最中间位置的一个数据(

17、或最中间两个数据的平均数)叫做这组数据的中位数。 第七章、平行线的证明一、命题 :判断一件事情的句子。 如果一个句子没有对某一件事情做出任何判断,那么它就不是命题。每个命题都由条件和结论两部分组成。条件是已知的事项,结论是由已知事项推论出的事项。命题通常可以写成“如果。那么。”的形式,其中“如果”引出的部分是条件,“那么”引出的部分是结论。正确的命题称为真命题,不正确的命题称为假命题。 公认的真命题称为真理。演绎推理的过程称为证明,经历证明的真命题称为定理。二、平行线的判定 1、 平行线的判定公理 (1)两直线被第三条直线所截,如果同位角相等,那么这两条直线平行 (2)两条平行线被第三条直线所截,同位角相等注意:证明两直线平行,关键是找到与特征结论相关的角. 2、平行线的性质定理:两直线平行,同位角相等.定理:两直线平行,内错角相等.定理:两直线平行,同旁内角互补定理:平行于同一条直线的两条直线平行 三、三角形的内角和定理 1、三角形内角和定理:三角形内角和等于180 2、三角形的一个外角等于和它不相邻的两个内角的和 3、三角形的一个外角大于任何一个和它不相邻的内角

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 教案示例

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁