《山东省泰安市岱岳区徂徕镇第一中学中考数学总复习 第20课时 概率问题及其简单应用教学案(无答案) 新人教版.doc》由会员分享,可在线阅读,更多相关《山东省泰安市岱岳区徂徕镇第一中学中考数学总复习 第20课时 概率问题及其简单应用教学案(无答案) 新人教版.doc(2页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、第20课时 概率问题及其简单应用教学案 【知识梳理】1频数、频率、概率:对一个随机事件做大量实验时会发现,随机事件发生的次数(也称为频数)与试验次数的比(也就是频率)总是在一个固定数值附近摆动,这个固定数值就叫随机事件发生的概率,概率的大小反映了随机事件发生的可能性的大小2概率的性质:P(必然事件)= 1,P(不可能事件)= 0,0P(不确定事件)1【思想方法】频率与概率是两个不同的概念,概率是伴随着随机事件客观存在着的,只要有一个随机事件存在,那么这个随机事件的概率就一定存在;而频率是通过实验得到的,它随着实验次数的变化而变化,但当试验的重复次数充分大后,频率在概率附近摆动,为了求出一随机事
2、件的概率,我们可以通过多次实验,用所得的频率来估计事件的概率【例题精讲】 例1.小明、小华用4张扑克牌(方块2,黑桃4,黑桃5,梅花5)玩游戏,他俩将扑克牌洗匀后,背面朝上放置在桌面上,小明先抽,小华后抽,抽出的牌不放回 (1)若小明恰好抽到了黑桃4 请在下边框中绘制这种情况的树状图; 求小华抽出的牌面数字比4大的概率(2)小明、小华约定:若小明抽到的牌面数字比小华的大,则小明胜;反之,则小明负,你认为这个游戏是否公平?说明你的理由例2 (2008年宁夏)张红和王伟为了争取到一张观看奥运知识竞赛的入场券,他们各自设计了一个方案:张红的方案是:转动如图所示的转盘,如果指针停在阴影区域,则张红得到
3、入场券;如果指针停在白色区域,则王伟得到入场券(转盘被等分成6个扇形若指针停在边界处,则重新转动转盘).王伟的方案是:从一副扑克牌中取出方块1、2、3,将它们背面朝上重新洗牌后,从中摸出一张,记录下牌面数字后放回,洗匀后再摸出一张若摸出两张牌面数字之和为奇数,则张红得到入场劵;若摸出两张牌面数字之和为偶数,则王伟得到入场券(1)计算张红获得入场券的概率,并说明张红的方案是否公平?(2)用树状图(或列表法)列举王伟设计方案的所有情况,计算王伟获得入场券的概率,并说明王伟的方案是否公平?思考与收获【当堂检测】1某校九年级三班在体育毕业考试中,全班所有学生得分的情况如下表,那么该班共有_人,随机地抽
4、取l人,恰好是获得30分的学生的概率是_,从表中你还能获取的信息是_(写出一条即可) 2完全相同的4个小球,上面分别标有数字1、1、2、2,将其放入一个不透明的盒子中摇匀,再从中随机摸球两次(第一次摸出球后放回摇匀)把第一次、第二次摸到的球上标有的数字分别记作m、n,以m、n分别作为一个点的横坐标与纵坐标,求点(m,n)不在第二象限的概率(用树状图或列表法求解)3如图的两个圆盘中,指针落在每一个数上的机会均等,那么两个指针同时落在偶数上的概率是 .4掷2枚1元钱的硬币和3枚1角钱的硬币,1枚1元钱的硬币和至少1枚1角钱的硬币的正面朝上的概率是 .5小红、小明、小芳在一起做游戏时需要确定做游戏的先后顺序,他们约定用“剪子、包袱、锤子”的方式确定,问在一个回合中三个人都出包袱的概率是_6图(2)是中国象棋棋盘的一部分,图中红方有两个马,黑方有三个卒子和一个炮,按照中国象棋中马的行走规则(马走日字,例如:按图(1)中的箭头方向走),红方的马现在走一步能吃到黑方棋子的概率是多少?马卒卒炮马卒马图(1)图(2) 60 2