《福建省漳州市长泰县第一中学2015届高三数学上学期期末考试试题 理.doc》由会员分享,可在线阅读,更多相关《福建省漳州市长泰县第一中学2015届高三数学上学期期末考试试题 理.doc(14页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、福建省长泰县第一中学2015届高三数学上学期期末考试试题 理一、选择题:本大题共10小题,每小题5分,共50分。1.若集合,则中元素个数为 ( )A .6个 B.4个 C . 2个 D. 0个2如果复数为纯虚数,那么实数的值为( )A2 B1C2 D1或 23. 在中,若,则的面积( )A 、 B、 C、 D、4下列命题中,真命题是( )A BC D5. 某程序框图如图所示,若程序运行后输出S的值是25,则图中判断框处可填入的语句是( )A B C D6如图,由函数的图象,直线及x轴所围成的阴影部分面积等于( )AB C D7.若函数则的值为( ) A.2B.3C.4D.58. 如图过拋物线y
2、22px(p0)的焦点F的直线依次交拋物线及准线于点A,B,C,若|BC|2|BF|,且|AF|3,则拋物线的方程为()A B C D9. 若、是互不相同的空间直线,、是不重合的平面,则下列结论正确的是( )A B C D10. 如图,三行三列的方阵中,从中任取三个数,则至少有两个数最大公约数大于1 的概率是 ( ) AB CD 第卷(非选择题共100分)二、 填空题:本大题共5小题,每小题4分,共20分.11. 在的展开式中,常数项为 ;(用数字作答)12. 已知两个单位向量,的夹角为30,.若,则 正实数=_ 13. 若变量x,y满足约束条件且z5yx的最大值为a,最小值为b,则ab的值是
3、_14、已知等差数列中, ,则 .15、2008年高考福建省理科数学第11题是:“双曲线()的两个焦点为、,若为其上一点,且,则双曲线离心率的取值范围为:A(1,3);B(1,3;C(3,+);D3,+)”其正确选项是B。若将其中的条件“”更换为“,且”,试经过合情推理,得出双曲线离心率的取值范围是 三、解答题(本大题共6小题,共80分,解答题写出必要的文字说明、推演步骤。)16.(本小题满分13分)已知向量, ,设函数(1)求函数的单调增区间;(2)已知锐角的三个内角分别为若,边,求边17(本小题满分13分)从装有大小相同的3个白球和3个红球的袋中做摸球试验,每次摸出一个球.如果摸出白球,则
4、另从袋外取一个红球替换该白球放回袋中,继续做下一次摸球试验;如果摸出红球,则结束摸球试验.()求一次摸球后结束试验的概率与两次摸球后结束试验的概率;()记结束试验时的摸球次数为,求的分布列及其数学期望. 18. (本小题满分13分)下图是一几何体的直观图、正视图、俯视图、侧视图。 (I)若F为PD的中点,求证:AF平面PCD; (II)求证:BD/平面PEC; (III)求平面PEC与平面PCD所成的二面角(锐角)的大小。 19.(本小题满分13分)设椭圆E: (a,b0),短轴长为4,离心率为,O为坐标原点,(I)求椭圆E的方程;(II)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E
5、恒有两个交点A,B,且?若存在,求出该圆的方程,若不存在说明理由。20.(本小题满分14分)已知函数()讨论函数在定义域内的极值点的个数;()若函数在处取得极值,且对,恒成立,求实数的取值范围;()当且时,试比较的大小21. 本题设有(1)、(2)、(3)三个选考题,每题7分,请考生任选2题做答,满分14分,如果多做,则按所做的前两题计分,做答时,先用2B铅笔在答题卡上把所选题目对应的题号涂黑,并将所选题号填入括号中。(1)(本小题满分7分)选修4-2:矩阵与变换二阶矩阵M对应的变换T将点(2,2)与(4,2)分别变换成点(2,2)与 (0,4)求矩阵M;设直线l在变换T作用下得到了直线m:x
6、y6,求l的方程长泰一中2014/2015学年上学期高三期末考数学(理科)试卷答案一、选择题:本大题共10小题,每小题5分,共50分。7设f(x)为定义在R上的奇函数当x0时,f(x)2x2xb(b为常数),则f(1)(D) A3 B1 C1 D38. 如图过拋物线y22px(p0)的焦点F的直线依次交拋物线及准线于点A,B,C,若|BC|2|BF|,且|AF|3,则拋物线的方程为()AB C D【答案】B解析:如图分别过点A,B作准线的垂线,分别交准线于点E,D,设|BF|=a,则由已知得:|BC|=2a,由定义得:|BD|=a,故BCD=30,在直角三角形ACE中,|AF|=3,|AC|=
7、3+3a,2|AE|=|AC|3+3a=6,从而得a=1,BDFG,,求得p=,因此抛物线方程为y2=3x9. 若、是互不相同的空间直线,、是不重合的平面,则下列结论正确的是( )A B C D解析:对于A,或 异面,所以错误;对于B, 与 可能相交可能平行,所以错误;对于C, 与 还可能异面或相交,所以错误.故答案应选D10. 如图,三行三列的方阵中,从中任取三个数,则至少有两个数最大公约数大于1 的概率是 ( ) AB CD 选D第卷(非选择题共100分)三、 填空题:本大题共5小题,每小题4分,共20分,把答案填在答题卡的相应位置。11三、解答题(本大题共6小题,共80分,解答题写出必要
8、的文字说明、推演步骤。)16.(本小题满分13分)已知向量, ,设函数(1)求函数的单调增区间;(2)已知锐角的三个内角分别为若,边,求边解:(1) 4分 17.从装有大小相同的3个白球和3个红球的袋中做摸球试验,每次摸出一个球.如果摸出白球,则另从袋外取一个红球替换该白球放回袋中,继续做下一次摸球试验;如果摸出红球,则结束摸球试验.()求一次摸球后结束试验的概率与两次摸球后结束试验的概率;()记结束试验时的摸球次数为,求的分布列及其数学期望.本题考查古典概型互斥事件和独立事件的概率,随机变量的分布列及数学期望等知识与方法;考查运算求解能力以及应用概率知识分析解决问题的能力;考查必然与或然思想
9、。解:()一次摸球结束试验的概率; 3分二次摸球结束试验的概率; 6分()依题意得: 的所有可能值有 7分,; 9分; 11分1234。 19.(本小题满分13分)设椭圆E: (a,b0),短轴长为4,离心率为,O为坐标原点,(I)求椭圆E的方程;(II)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点A,B,且?若存在,求出该圆的方程,若不存在说明理由。,要使,需使,即,所以,所以又,所以,所以,即或,因为直线为圆心在原点的圆的一条切线,所以圆的半径为,所求的圆为, 11分此时圆的切线都满足或,而当切线的斜率不存在时切线为与椭圆的两个交点为或满足,综上, 存在圆心在原点的圆
10、,使得该圆的任意一条切线与椭圆E恒有两个交点A,B,且. 13分20.(本小题满分14分)已知函数()讨论函数在定义域内的极值点的个数;()若函数在处取得极值,且对,恒成立,求实数的取值范围;()当且时,试比较的大小()解:令,由()可知在上单调递减,则在上单调递减当时,即当时,当时, 14分21. 本题设有(1)、(2)、(3)三个选考题,每题7分,请考生任选2题做答,满分14分,如果多做,则按所做的前两题计分,做答时,先用2B铅笔在答题卡上把所选题目对应的题号涂黑,并将所选题号填入括号中。(1)(本小题满分7分)选修4-2:矩阵与变换二阶矩阵M对应的变换T将点(2,2)与(4,2)分别变换成点(2,2)与(0,4)求矩阵M;设直线l在变换T作用下得到了直线m:xy6,求l的方程(2) (本小题满分7分)选修4-4:坐标系与参数方程已知极坐标系的极点与直角坐标系的原点重合,极轴与轴的非负半轴重合若曲线的方程为,曲线的参数方程为() 将的方程化为直角坐标方程;()若点为上的动点,为上的动点,求的最小值解:()由已知得,即3分 14