对数函数指数函数幂函数.doc

上传人:一*** 文档编号:4516568 上传时间:2021-09-25 格式:DOC 页数:13 大小:111KB
返回 下载 相关 举报
对数函数指数函数幂函数.doc_第1页
第1页 / 共13页
对数函数指数函数幂函数.doc_第2页
第2页 / 共13页
点击查看更多>>
资源描述

《对数函数指数函数幂函数.doc》由会员分享,可在线阅读,更多相关《对数函数指数函数幂函数.doc(13页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、,对数的公理化定义真数式子没根号那就只要求真数式大于零,如果有根号,要求真数大于零还要保证根号里的式子大于等于零, 底数则要大于0且不为1 对数函数的底数为什么要大于0且不为1? 【在一个普通对数式里 a0,或=1 的时候是会有相应b的值的。但是,根据对数定义: logaa=1;如果a=1或=0那么logaa就可以等于一切实数(比如log1 1也可以等于2,3,4,5,等等)第二,根据定义运算公式:loga Mn = nloga M 如果a0且a1时,M0,N0,那么: (1)log(a)(MN)=log(a)(M)+log(a)(N); (2)log(a)(M/N)=log(a)(M)-lo

2、g(a)(N); (3)log(a)(Mn)=nlog(a)(M) (nR) (4)换底公式:log(A)M=log(b)M/log(b)A (b0且b1) (5) a(log(b)n)=n(log(b)a) 证明: 设a=nx 则a(log(b)n)=(nx)log(b)n=n(xlog(b)n)=nlog(b)(nx)=n(log(b)a) (6)对数恒等式:alog(a)N=N; log(a)ab=b 对数与指数之间的关系当a0且a1时,ax=N x=(a)N 对数函数右图给出对于不同大小a所表示的函数图形: 可以看到对数函数的图形只不过的指数函数的图形的关于直线y=x的对称图形,因为它

3、们互为反函数。 (1) 对数函数的定义域为大于0的实数集合。 (2) 对数函数的值域为全部实数集合。 (3) 函数图像总是通过(1,0)点。 (4) a大于1时,为单调增函数,并且上凸;a小于1大于0时,函数为单调减函数,并且下凹。 (5) 显然对数函数无界。 对数函数的常用简略表达方式: (1)log(a)(b)=log(a)(b) (2)lg(b)=log(10)(b) (3)ln(b)=log(e)(b) 对数函数的运算性质: 如果a0,且a不等于1,M0,N0,那么: (1)log(a)(MN)=log(a)(M)+log(a)(N); (2)log(a)(M/N)=log(a)(M)

4、-log(a)(N); (3)log(a)(Mn)=nlog(a)(M) (n属于R) (4)log(ak)(Mn)=(n/k)log(a)(M) (n属于R) 对数与指数之间的关系 当a大于0,a不等于1时,a的X次方=N等价于log(a)N log(ak)(Mn)=(n/k)log(a)(M) (n属于R) 换底公式 (很重要) log(a)(N)=log(b)(N)/log(b)(a)= lnN/lna=lgN/lga ln 自然对数 以e为底 e为无限不循环小数 lg 常用对数 以10为底 对数函数的常用简略表达方式(1)常用对数:lg(b)=log(10)(b) (2)自然对数:ln

5、(b)=log(e)(b) e=2.718281828.通常情况下只取e=2.71828对数函数的定义 对数函数的一般形式为 y=(a)x,它实际上就是指数函数的反函数(图象关于直线y=x对称的两函数互为反函数),可表示为x=ay。因此指数函数里对于a的规定(a0且a1),同样适用于对数函数。 右图给出对于不同大小a所表示的函数图形: 可以看到对数函数的图形只不过的指数函数的图形的关于直线y=x的对称图形,因为它们互为反函数。 性质定义域求解:对数函数y=loga x 的定义域是x x0,但如果遇到对数型复合函数的定义域的求解,除了要注意真数大于0以外,还应注意底数大于0且不等于1,如求函数y

6、=logx(2x-1)的定义域,需满足x0且x1 。 2x-10 =x1/2且x1,即其定义域为 x x1/2且x1值域:实数集R 定点:函数图像恒过定点(1,0)。 单调性:a1时,在定义域上为单调增函数,并且上凸; 0a0且1) (xR),从上面我们关于幂函数的讨论就可以知道,要想使得x能够取整个实数集合为定义域,则只有使得 如图所示为a的不同大小影响函数图形的情况。 在函数y=ax中可以看到: (1) 指数函数的定义域为所有实数的集合,这里的前提是a大于0且不等于1,对于a不大于0的情况,则必然使得函数的定义域不存在连续的区间,因此我们不予考虑, 同时a等于函数无意义一般也不考虑。 (2

7、) 指数函数的值域为大于0的实数集合。 (3) 函数图形都是下凸的。 (4) a大于1,则指数函数单调递增;a小于1大于0,则为单调递减的。 (5) 可以看到一个显然的规律,就是当a从0趋向于无穷大的过 指数函数程中(当然不能等于0),函数的曲线从分别接近于Y轴与X轴的正半轴的单调递减函数的位置,趋向分别接近于Y轴的正半轴与X轴的负半轴的单调递增函数的位置。其中水平直线y=1是从递减到递增的一个过渡位置。 (6) 函数总是在某一个方向上无限趋向于X轴,并且永不相交。 (7) 函数总是通过(0,1)这点,(若y=ax+b,则函数定过点(0,1+b) (8) 显然指数函数无界。 (9) 指数函数既

8、不是奇函数也不是偶函数。 (10)当两个指数函数中的a互为倒数时,两个函数关于y轴对称,但这两个函数都不具有奇偶性。 (11)当指数函数中的自变量与因变量一一映射时,指数函数具有反函数。 编辑本段.底数的平移:对于任何一个有意义的指数函数: 在指数上加上一个数,图像会向左平移;减去一个数,图像会向右平移。 在f(X)后加上一个数,图像会向上平移;减去一个数,图像会向下平移。 即“上加下减,左加右减” 编辑本段底数与指数函数图像: 指数函数(1)由指数函数y=ax与直线x=1相交于点(1,a)可知:在y轴右侧,图像从下到上相应的底数由小变大。 (2)由指数函数y=ax与直线x=-1相交于点(-1

9、,1/a)可知:在y轴左侧,图像从下到上相应的底数由大变小。 (3)指数函数的底数与图像间的关系可概括的记忆为:在y轴右边“底大图高”;在y轴左边“底大图低”。(如右图)。 编辑本段幂的大小比较:比较大小常用方法:(1)比差(商)法:(2)函数单调性法;(3)中间值法:要比较A与B的大小,先找一个中间值C,再比较A与C、B与C的大小,由不等式的传递性得到A与B之间的大小。 比较两个幂的大小时,除了上述一般方法之外,还应注意: (1)对于底数相同,指数不同的两个幂的大小比较,可以利用指数函数的单调性来判断。 例如:y1=34,y2=35,因为3大于1所以函数单调递增(即x的值越大,对应的y值越大

10、),因为5大于4,所以y2大于y1. (2)对于底数不同,指数相同的两个幂的大小比较,可 指数函数以利用指数函数图像的变化规律来判断。 例如:y1=1/24,y2=34,因为1/2小于1所以函数图像在定义域上单调递减;3大于1,所以函数图像在定义域上单调递增,在x=0是两个函数图像都过(0,1)然后随着x的增大,y1图像下降,而y2上升,在x等于4时,y2大于y1. (3)对于底数不同,且指数也不同的幂的大小比较,则可以利用中间值来比较。如: 对于三个(或三个以上)的数的大小比较,则应该先根据值的大小(特别是与0、1的大小)进行分组,再比较各组数的大小即可。 在比较两个幂的大小时,如果能充分利

11、用“1”来搭“桥”(即比较它们与“1”的大小),就可以快速的得到答案。那么如何判断一个幂与“1”大小呢?由指数函数的图像和性质可知“同大异小”。即当底数a和1与指数x与0之间的不等号同向(例如: a 1且x 0,或0 a 1且 x 0)时,ax大于1,异向时ax小于1. 3例:下列函数在R上是增函数还是减函数?说明理由. y=4x 因为41,所以y=4x在R上是增函数; y=(1/4)x 因为01/40且a1) (4)a1时,曲线由左向右逐渐上升即a1时,函数在(-,+)上是增函数;0a1是,曲线逐渐下降即0a0,则a可以是任意实数; 排除了为0这种可能,即对于x0的所有实数,q不能是偶数;

12、排除了为负数这种可能,即对于x为大于或等于0的所有实数,a就不能是负数。 编辑本段定义域总结起来,就可以得到当a为不同的数值时,幂函数的定义域的不同情况如下: 如果a为任意实数,则函数的定义域为大于0的所有实数; 如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根据q的奇偶性来确定,即如果同时q为偶数,则x不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0 的所有实数。 在x大于0时,函数的值域总是大于0的实数。 在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。 而只有a为正数,0才进入函数的值域。 由于x大于0是对a的任意取值都有意义的, 因此下面给出幂函数在第一象限的各自情况. 编辑本段第一象限可以看到: (1)所有的图形都通过(1,1)这点.(a0) a0时 图象过点(0,0)和(1,1) (2)当a大于0时,幂函数为单调递增的,而a小于0时,幂函数为单调递减函数。 (3)当a大于1时,幂函数图形下凸;当a小于1大于0时,幂函数图形上凸。 (4)当a小于0时,a越小,图形倾斜程度越大。 (5)显然幂函数无界限。 (6)a=2n,该函数为偶函数 x|x0。 (7) 0a1时,只在第一象限内有图像,即x0. 编辑本段图象 幂函数的图象:

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 教案示例

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁