《蛋白质相互作用的生物信息学精选文档.ppt》由会员分享,可在线阅读,更多相关《蛋白质相互作用的生物信息学精选文档.ppt(35页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、蛋白质相互作用的生物信息学本讲稿第一页,共三十五页蛋白质相互作用的生物信息学蛋白质相互作用的生物信息学1.实验数据实验数据2.蛋白质相互作用数据库蛋白质相互作用数据库3.高通量实验数据的验证高通量实验数据的验证4.蛋白质相互作用网络蛋白质相互作用网络5.计算预测蛋白质相互作用计算预测蛋白质相互作用本讲稿第二页,共三十五页实验数据实验数据1.蛋白质相互作用的知识来源于实验。蛋白质相互作用的知识来源于实验。2.高通量地应用传统实验方法获取大量相高通量地应用传统实验方法获取大量相互作用信息。互作用信息。3.高通量的数据需要验证。高通量的数据需要验证。本讲稿第三页,共三十五页高通量实验方法高通量实验方
2、法CurrOpinStructBiol2003,13:377CurrOpinStructBiol2003,13:377本讲稿第四页,共三十五页Yeasttwo-hybridassay Benefits:Benefits:invivo.invivo.Dontneedpureproteins.Dontneedpureproteins.DontneedAb.DontneedAb.Drawbacks:onlyonly twotwo proteinsproteins areare testedtested atat a a timetime(no(no cooperativecooperativebin
3、ding);binding);itittakestakesplaceplaceininthethenucleus,nucleus,sosomanymanyproteinsproteinsarearenotnotinintheirtheir nativenative compartment;compartment;andand itit predictspredicts possiblepossibleinteractions,butisunrelatedtothephysiologicalsetting.interactions,butisunrelatedtothephysiological
4、setting.本讲稿第五页,共三十五页MassspectrometryofpurifiedcomplexesBenefits:severalmembersofacomplexcanbeseveralmembersofacomplexcanbe tagged,givingantagged,givinganinternalcheckforconsistency;internalcheckforconsistency;anditdetectsanditdetects realcomplexesinphysiologicalsettings.realcomplexesinphysiologicals
5、ettings.Drawbacks:Drawbacks:itmightitmight misssomecomplexesthatarenotpresentundermisssomecomplexesthatarenotpresentunderthegivenconditions;thegivenconditions;taggingmaydisturbcomplexformation;andlooselytaggingmaydisturbcomplexformation;andlooselyassociatedcomponentsmaybewashedoffduringassociatedcom
6、ponentsmaybewashedoffduringpurification.purification.本讲稿第六页,共三十五页CorrelatedmRNAexpressionBenefits:itisaninvivotechnique,albeitanindirectone;itisaninvivotechnique,albeitanindirectone;andithasmuchbroadercoverageofcellularconditionsthanandithasmuchbroadercoverageofcellularconditionsthanothermethods.oth
7、ermethods.Drawbacks:itisapowerfulmethodfordiscriminatingcellstatesoritisapowerfulmethodfordiscriminatingcellstatesordiseaseoutcomes,butisarelativelyinaccuratediseaseoutcomes,butisarelativelyinaccuratepredictorofdirectphysicalinteraction;predictorofdirectphysicalinteraction;anditisverysensitivetopara
8、meterchoicesandanditisverysensitivetoparameterchoicesandclusteringmethodsduringanalysis.clusteringmethodsduringanalysis.本讲稿第七页,共三十五页Geneticinteractions(syntheticlethality).Benefits:itisaninvivotechnique,albeitan indirect one;and it is amenable tounbiasedgenome-widescreens.Drawbacks:notnecessarilyphy
9、sicalinteractions本讲稿第八页,共三十五页蛋白质相互作用的生物信息学蛋白质相互作用的生物信息学1.实验数据实验数据2.蛋白质相互作用数据库蛋白质相互作用数据库3.高通量实验数据的验证高通量实验数据的验证4.蛋白质相互作用网络蛋白质相互作用网络5.计算预测蛋白质相互作用计算预测蛋白质相互作用本讲稿第九页,共三十五页蛋白质相互作用数据库蛋白质相互作用数据库CurrOpinStructBiol2003,13:377CurrOpinStructBiol2003,13:377本讲稿第十页,共三十五页THEDIPDATABASEDatabaseofInteractingProteinsTh
10、eDIPdatabasecatalogsexperimentallydeterminedinteractionsbetweenproteins.本讲稿第十一页,共三十五页DIP相互作用的表达相互作用的表达 NucleicAcidsResearch,2000,28,289NucleicAcidsResearch,2000,28,289291291本讲稿第十二页,共三十五页DIP数据库结构数据库结构 NucleicAcidsResearch,2000,28,289NucleicAcidsResearch,2000,28,289291291本讲稿第十三页,共三十五页BIND:theBiomolecu
11、larInteractionNetworkDatabaseNucleicAcidsResearch,2001,29,242-245NucleicAcidsResearch,2001,29,242-245本讲稿第十四页,共三十五页蛋白质相互作用的生物信息学蛋白质相互作用的生物信息学1.实验数据实验数据2.蛋白质相互作用数据库蛋白质相互作用数据库3.高通量实验数据的验证高通量实验数据的验证4.蛋白质相互作用网络蛋白质相互作用网络5.计算预测蛋白质相互作用计算预测蛋白质相互作用本讲稿第十五页,共三十五页高通量实验数据需要验证高通量实验数据需要验证CurrOpinStructBiol2003,13:3
12、77CurrOpinStructBiol2003,13:377本讲稿第十六页,共三十五页与可信的数据相比与可信的数据相比CurrOpinStructBiol2003,13:377CurrOpinStructBiol2003,13:377本讲稿第十七页,共三十五页ExpressionProfileReliabilityEPRIndexExpressionProfileReliabilityIndex(EPRIndex)evaluatesthequalityofalarge-scaleprotein-proteininteractiondatasetsbycomparingtheexpressio
13、nprofileoftheinteractingdatasetwiththatofthehigh-qualitysubsetoftheDIPdatabase.本讲稿第十八页,共三十五页高通量数据互相比高通量数据互相比CurrOpinStructBiol2003,13:377CurrOpinStructBiol2003,13:377本讲稿第十九页,共三十五页ParalogousVerificationMethodPVMScoreTheParalogousVerification(PVM)methodjudgesaninteractionprobableiftheputativelyinterac
14、tingpairhasparalogsthatalsointeract.本讲稿第二十页,共三十五页DomainPairVerificationDPVScoreTheDomainPairVerification(DPV)methodjudgesaninteractionprobableifpotentialdomain-domaininteractionsbetweenthepairaredeemedprobable.本讲稿第二十一页,共三十五页CorrelationdistanceNature BiotechnologyNature Biotechnology2003,22,782003,22
15、,78本讲稿第二十二页,共三十五页蛋白质相互作用网络蛋白质相互作用网络NatureNature2001,411,41-422001,411,41-42本讲稿第二十三页,共三十五页相互作用网络的用途相互作用网络的用途Themosthighlyconnectedproteinsinthecellarethemostimportantforitssurvival.NatureNature2001,411,41-422001,411,41-42本讲稿第二十四页,共三十五页蛋白质相互作用的生物信息学蛋白质相互作用的生物信息学1.实验数据实验数据2.蛋白质相互作用数据库蛋白质相互作用数据库3.高通量实验数
16、据的验证高通量实验数据的验证4.蛋白质相互作用网络蛋白质相互作用网络5.计算预测蛋白质相互作用计算预测蛋白质相互作用本讲稿第二十五页,共三十五页计算预测蛋白质相互作用计算预测蛋白质相互作用CurrOpinStructBiol2003,13:377CurrOpinStructBiol2003,13:377本讲稿第二十六页,共三十五页DockingNeed3DStructuresCAPRI:CriticalAssessmentofPredictedInteractions,acommunity-wideexperimentforassessingthepredictivepowerofthesep
17、rocedures.本讲稿第二十七页,共三十五页ProteinFusionBasedon:Somepairsofinteractingproteinsencodedinseparategenesinoneorganismarefusedtoproducesinglehomologousproteinsinotherorganism.CompareE.Coliwithothergenomes:6,809putativeCompareE.Coliwithothergenomes:6,809putativeprotein-proteininteractionsprotein-proteininter
18、actionsMarcotteEMScience285,751(1999)MarcotteEMScience285,751(1999)Compareyeastwithothers:45,502putativeinteractionsEnrightAJNature402,86(1999)EnrightAJNature402,86(1999)本讲稿第二十八页,共三十五页GeneClusteringBasedon:Functionalcouplinggenesareinconservedgeneclustersindifferentgenomes.本讲稿第二十九页,共三十五页Gene Cluster
19、ingGene ClusteringOverbeek R PNAS 96,2896(1999)Overbeek R PNAS 96,2896(1999)本讲稿第三十页,共三十五页Overbeek R PNAS 96,2896(1999)Overbeek R PNAS 96,2896(1999)本讲稿第三十一页,共三十五页PhylogeneticprofilePNAS(1999)96,4285-4288本讲稿第三十二页,共三十五页ACombinedExperimentalandComputationalStrategy1)Screenrandompeptidelibrariesbyphagedi
20、splayScreenrandompeptidelibrariesbyphagedisplaytodefinetheconsensussequencesforpreferredtodefinetheconsensussequencesforpreferredligandsthatbindtoeachligandsthatbindtoeach peptiderecognitionmodule.2)Onthebasisoftheseconsensussequences,2)Onthebasisoftheseconsensussequences,computationallyderiveaprote
21、in-proteininteractioncomputationallyderiveaprotein-proteininteractionnetworkthatlinkseachnetworkthatlinkseach peptiderecognitionmoduletoproteinscontainingapreferred peptideligand.ScienceScience2002295,3212002295,321本讲稿第三十三页,共三十五页3)Experimentallyderiveaprotein-proteininteractionExperimentallyderiveap
22、rotein-proteininteractionnetworkbytestingeachpeptiderecognitionmodulenetworkbytestingeachpeptiderecognitionmoduleforassociationforassociationtoeachproteinoftheinferredtoeachproteinoftheinferredproteomeintheyeasttwo-hybridproteomeintheyeasttwo-hybridsystem.system.4)Determinetheintersectionofthepredic
23、tedand4)Determinetheintersectionofthepredictedandexperimentalnetworksandtestinvivothebiologicalexperimentalnetworksandtestinvivothebiologicalrelevanceofkeyrelevanceofkeyinteractionswithinthisset.interactionswithinthisset.ACombinedExperimentalandComputationalStrategyScienceScience2002295,3212002295,321本讲稿第三十四页,共三十五页高友鹤高友鹤本讲稿第三十五页,共三十五页