《【创新设计】(浙江专用)2014届高考数学总复习 第12篇 第1讲 离散型随机变量及其分布列限时训练 理.doc》由会员分享,可在线阅读,更多相关《【创新设计】(浙江专用)2014届高考数学总复习 第12篇 第1讲 离散型随机变量及其分布列限时训练 理.doc(6页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、随机变量及其分布列第1讲离散型随机变量及其分布列 分层A级基础达标演练(时间:30分钟满分:55分)一、选择题(每小题5分,共20分)1如果X是一个离散型随机变量,那么下列命题中假命题是 ()AX取每个可能值的概率是非负实数BX取所有可能值的概率之和为1CX取某2个可能值的概率等于分别取其中每个值的概率之和DX在某一范围内取值的概率大于它取这个范围内各个值的概率之和解析由离散型随机变量的性质,得pi0,i1,2,n,且i1.答案D2已知随机变量X的分布列为P(Xi)(i1,2,3),则P(X2)等于()A. B. C. D.解析1,a3,P(X2).答案C3若随机变量X的概率分布列为Xx1x2
2、Pp1p2且p1p2,则p1等于()A. B. C. D.解析由p1p21且p22p1可解得p1.答案B4已知随机变量X的分布列为:P(Xk),k1,2,则P(2X4)等于()A. B. C. D.解析P(2X4)P(X3)P(X4).答案A二、填空题(每小题5分,共10分)5(2012上海虹口3月模拟)已知某一随机变量的概率分布列如下,且E()6.3,则a_.4a9P0.50.1b解析由分布列性质知:0.50.1b1,b0.4.E()40.5a0.190.46.3.a7.答案76(2013泉州模拟)在一个口袋中装有黑、白两个球,从中随机取一球,记下它的颜色,然后放回,再取一球,又记下它的颜色
3、,写出这两次取出白球数的分布列为_解析的所有可能值为0,1,2.P(0),P(1),P(2).012P答案012P三、解答题(共25分)7(12分)在一次购物抽奖活动中,假设某10张券中有一等奖券1张,可获价值50元的奖品;有二等奖券3张,每张可获价值10元的奖品;其余6张没有奖某顾客从此10张奖券中任抽2张,求:(1)该顾客中奖的概率;(2)该顾客获得的奖品总价值X元的概率分布列解(1)该顾客中奖,说明是从有奖的4张奖券中抽到了1张或2张,由于是等可能地抽取,所以该顾客中奖的概率P.(2)依题意可知,X的所有可能取值为0,10,20,50,60(元),且P(X0),P(X10),P(X20)
4、,P(X50),P(X60).所以X的分布列为:X010205060P8.(13分)(2012江苏)设为随机变量,从棱长为1的正方体的12条棱中任取两条,当两条棱相交时,0 ;当两条棱平行时,的值为两条棱之间的距离;当两条棱异面时,1.(1)求概率P(0);(2)求的分布列,并求其数学期望E()解(1)若两条棱相交,则交点必为正方体8个顶点中的1个,过任意1个顶点恰有3条棱,所以共有8C对相交棱,因此P(0).(2)若两条棱平行,则它们的距离为1或,其中距离为的共有6对,故P(),于是P(1)1P(0)P()1,所以随机变量的分布列是01P因此E()1.分层B级创新能力提升1(2013长沙二模
5、)若离散型随机变量X的分布列为:X01P9c2c38c则常数c的值为 ()A.或 B.C. D1解析c.答案C2一袋中有5个白球,3个红球,现从袋中往外取球,每次任取一个记下颜色后放回,直到红球出现10次时停止,设停止时共取了X次球,则P(X12)等于 ()AC102 BC92CC92 DC102解析“X12”表示第12次取到红球,前11次有9次取到红球,2次取到白球,因此P(X12)C92C102.答案D3(2013郑州调研)设随机变量X的概率分布列为X1234Pm则P(|X3|1)_.解析由m1,解得m,P(|X3|1)P(X2)P(X4).答案4甲、乙两队在一次对抗赛的某一轮中有3个抢答
6、题,比赛规定:对于每一个题,没有抢到题的队伍得0分,抢到题并回答正确的得1分,抢到题但回答错误的扣1分(即得1分)若X是甲队在该轮比赛获胜时的得分(分数高者胜),则X的所有可能取值是_解析X1,甲抢到一题但答错了,或抢到三题只答对一题;X0,甲没抢到题,或甲抢到2题,但答时一对一错;X1时,甲抢到1题且答对或甲抢到3题,且一错两对;X2时,甲抢到2题均答对;X3时,甲抢到3题均答对答案1,0,1,2,35.某高中共派出足球、排球、篮球三个球队参加市学校运动会,它们获得冠军的概率分别为,.(1)求该高中获得冠军个数X的分布列;(2)若球队获得冠军,则给其所在学校加5分,否则加2分,求该高中得分的
7、分布列解(1)X的可能取值为0,1,2,3,取相应值的概率分别为P(X0),P(X1),P(X2),P(X3).X的分布列为X0123P(2)得分5X2(3X)63X,X的可能取值为0,1,2,3.的可能取值为6,9,12,15,取相应值的概率分别为P(6)P(X0),P(9)P(X1),P(12)P(X2),P(15)P(X3).得分的分布列为691215P6.某地最近出台一项机动车驾照考试规定:每位考试者一年之内最多有4次参加考试的机会,一旦某次考试通过,便可领取驾照,不再参加以后的考试,否则就一直考到第4次为止如果李明决定参加驾照考试,设他每次参加考试通过的概率依次为0.6,0.7,0.
8、8,0.9.求在一年内李明参加驾照考试次数X的分布列,并求李明在一年内领到驾照的概率解X的取值分别为1,2,3,4.X1,表明李明第一次参加驾照考试就通过了,故P(X1)0.6.X2,表明李明在第一次考试未通过,第二次通过了,故P(X2)(10.6)0.70.28.X3,表明李明在第一、二次考试未通过,第三次通过了,故P(X3)(10.6)(10.7)0.80.096.X4,表明李明第一、二、三次考试都未通过,故P(X4)(10.6)(10.7)(10.8)0.024.李明实际参加考试次数X的分布列为X1234P0.60.280.0960.024李明在一年内领到驾照的概率为1(10.6)(10.7)(10.8)(10.9)0.997 6.6