《2014届高考数学总复习 课时提升作业(五十一) 第八章 第五节 文.doc》由会员分享,可在线阅读,更多相关《2014届高考数学总复习 课时提升作业(五十一) 第八章 第五节 文.doc(6页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、课时提升作业(五十一)一、选择题1.(2013商洛模拟)已知椭圆的长轴长是短轴长的倍,则椭圆的离心率等于()(A)(B)(C)(D)2.已知焦点在x轴上的椭圆的离心率为,且它的长轴长等于圆C:x2+y2-2x-15=0的半径,则椭圆的标准方程是()(A)+=1(B)+=1(C)+y2=1(D)+=13.(2013马鞍山模拟)椭圆x2+4y2=1的离心率为()(A)(B)(C)(D)4.已知圆(x+2)2+y2=36的圆心为M,设A为圆上任一点,N(2,0),线段AN的垂直平分线交MA于点P,则动点P的轨迹是()(A)圆(B)椭圆(C)双曲线(D)抛物线5.(2013宜春模拟)过椭圆+=1(ab
2、0)的左焦点F1作x轴的垂线交椭圆于点P,F2为右焦点,若F1PF2=60,则椭圆的离心率为()(A)(B)(C)(D)6.(能力挑战题)以F1(-1,0),F2(1,0)为焦点且与直线x-y+3=0有公共点的椭圆中,离心率最大的椭圆方程是()(A)+=1(B)+=1(C)+=1(D)+=1二、填空题7.在平面直角坐标系xOy中,椭圆C的中心为原点,焦点F1,F2在x轴上,离心率为.过F1的直线l交C于A,B两点,且ABF2的周长为16,那么C的方程为.8.已知点P是椭圆16x2+25y2=400上一点,且在x轴上方,F1,F2分别是椭圆的左、右焦点,直线PF2的斜率为-4,则PF1F2的面积
3、是.9.分别过椭圆+=1(ab0)的左、右焦点F1,F2所作的两条互相垂直的直线l1, l2的交点在此椭圆的内部,则此椭圆的离心率的取值范围是.三、解答题10.(2013南昌模拟)在平面直角坐标系中,已知曲线C上任意一点P到两个定点F1(-,0)和F2(,0)的距离之和为4.(1)求曲线C的方程.(2)设过(0,-2)的直线l与曲线C交于A,B两点,以线段AB为直径作圆.试问:该圆能否经过坐标原点?若能,请写出此时直线l的方程,并证明你的结论;若不能,请说明理由.11.(2013淮南模拟)已知椭圆C:+=1(ab0)的右顶点A为抛物线y2=8x的焦点,上顶点为B,离心率为.(1)求椭圆C的方程
4、.(2)过点(0,)且斜率为k的直线l与椭圆C相交于P,Q两点,若线段PQ的中点横坐标是-,求直线l的方程.12.(2013九江模拟)已知点P是圆F1:(x+)2+y2=16上任意一点,点F2与点F1关于原点对称.线段PF2的中垂线与PF1交于M点.(1)求点M的轨迹C的方程.(2)设轨迹C与x轴的两个左右交点分别为A,B,点K是轨迹C上异于A,B的任意一点,KHx轴,H为垂足,延长HK到点Q使得|HK|=|KQ|,连接AQ并延长交过B且垂直于x轴的直线l于点D,N为DB的中点.试判断直线QN与以AB为直径的圆O的位置关系.答案解析1.【解析】选B.由题意得2a=2b,即a=b.又a2=b2+
5、c2,所以有b=c,a=c,得离心率e=.2.【解析】选A.圆C的方程可化为(x-1)2+y2=16.知其半径r=4,长轴长2a=4,a=2.又e=,c=1,b2=a2-c2=4-1=3,椭圆的标准方程为+=1.3.【解析】选A.先将x2+4y2=1化为标准方程+=1,则a=1,b=,c=.离心率e=.4.【解析】选B.点P在线段AN的垂直平分线上,故|PA|=|PN|,又AM是圆的半径,|PM|+|PN|=|PM|+|PA|=|AM|=6|MN|,由椭圆的定义知,P的轨迹是椭圆.5.【解析】选B.由题意知点P的坐标为(-c,)或(-c,-),因为F1PF2=60,那么=,2ac=b2,这样根
6、据a,b,c的关系式化简得到结论为.6.【思路点拨】由于c=1,所以只需长轴最小,即公共点P,使得|PF1|+|PF2|最小时的椭圆方程.【解析】选C.由于c=1,所以离心率最大即为长轴最小.点F1(-1,0)关于直线x-y+3=0的对称点为F(-3,2),设点P为直线与椭圆的公共点,则2a=|PF1|+|PF2|=|PF|+|PF2|FF2|=2.取等号时离心率取最大值,此时椭圆方程为+=1.7.【解析】根据椭圆焦点在x轴上,可设椭圆方程为+=1(ab0).e=,=.根据ABF2的周长为16得4a=16,因此a=4,b=2,所以椭圆方程为+=1.答案:+=18.【解析】由已知F1(-3,0)
7、,F2(3,0),所以直线PF2的方程为y=-4(x-3),代入16x2+25y2=400,整理得76x2-450x+650=0,解得:x=或x=(因为x3,故舍去),又点P(x,y)在椭圆上,且在x轴上方,得16()2+25y2=400,解得y=2,=|F1F2|y=62=6.答案:69.【思路点拨】关键是由l1, l2的交点在此椭圆的内部,得到a,b,c间的关系,进而求得离心率e的取值范围.【解析】由已知得交点P在以F1F2为直径的圆x2+y2=c2上.又点P在椭圆内部,所以有c2b2,又b2=a2-c2,有c2a2-c2,即2c2a2,亦即:,00,k2,则x1+x2=,x1x2=,代入
8、,得(1+k2)-2k+4=0.即k2=4,k=2或k=-2,满足式.所以,存在直线l,其方程为y=2x-2或y=-2x-2.11.【解析】(1)抛物线y2=8x的焦点为A(2,0),依题意可知a=2.因为离心率e=,所以c=.故b2=a2-c2=1,所以椭圆C的方程为:+y2=1.(2)直线l:y=kx+,由消去y可得(4k2+1)x2+8kx+4=0,因为直线l与椭圆C相交于P,Q,所以=(8k)2-4(4k2+1)40,解得|k|.又x1+x2=,x1x2=,设P(x1,y1),Q(x2,y2),PQ中点M(x0,y0),因为线段PQ的中点横坐标是-,所以x0=-,解得k=1或k=,因为
9、|k|,所以k=1,因此所求直线l:y=x+.12.【解析】(1)由题意得,F1(-,0),F2(,0),圆F1的半径为4,且|MF2|=|MP|,从而|MF1|+|MF2|=|MF1|+|MP|=4|F1F2|=2,点M的轨迹是以F1,F2为焦点的椭圆,其中长轴2a=4,焦距2c=2,则短半轴b=1,椭圆方程为:+y2=1.(2)设K(x0,y0),则+=1.|HK|=|KQ|,Q(x0,2y0),OQ=2,Q点在以O为圆心,2为半径的圆上,即Q点在以AB为直径的圆O上.又A(-2,0),直线AQ的方程为y=(x+2).令x=2,得D(2,).又B(2,0),N为DB的中点,N(2,).=(x0,2y0),=(x0-2,).=x0(x0-2)+2y0=x0(x0-2)+=x0(x0-2)+=x0(x0-2)+x0(2-x0)=0,直线QN与以AB为直径的圆O相切.- 6 -