《【创新设计】(浙江专用)2014届高考数学总复习 第9篇 第7讲 抛物线限时训练 理.doc》由会员分享,可在线阅读,更多相关《【创新设计】(浙江专用)2014届高考数学总复习 第9篇 第7讲 抛物线限时训练 理.doc(6页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、第7讲抛物线分层A级基础达标演练(时间:30分钟满分:55分)一、选择题(每小题5分,共20分)1(2012青岛统测)已知抛物线x2ay的焦点恰好为双曲线y2x22的上焦点,则a()A1 B4 C8 D16解析据抛物线方程可得其焦点坐标为,双曲线的上焦点为(0,2),据题意2,解得a8.答案C2点M(5,3)到抛物线yax2的准线的距离为6,那么抛物线的方程是()Ay12x2 By12x2或y36x2Cy36x2 Dyx2或yx2解析分两类a0,a0)上一点P到焦点和抛物线的对称轴的距离分别为10和6,则p的值为 ()A2 B18C2或18 D4或16解析设P(x0,y0),则362p,即p2
2、20p360,解得p2或18.答案C4(2012山东)已知双曲线C1:1(a0,b0)的离心率为2.若抛物线C2:x22py(p0)的焦点到双曲线C1的渐近线的距离为2,则抛物线C2的方程为()Ax2y Bx2yCx28y Dx216y解析1的离心率为2,2,即4,.x22py的焦点坐标为,1的渐近线方程为yx,即yx.由题意,得2,p8.故C2:x216y,选D.答案D二、填空题(每小题5分,共10分)5设P是曲线y24x上的一个动点,则点P到点B(1,1)的距离与点P到直线x1的距离之和的最小值为_解析抛物线的顶点为O(0,0),p2,准线方程为x1,焦点F坐标为(1,0),点P到点B(1
3、,1)的距离与点P到准线x1的距离之和等于|PB|PF|.如图,|PB|PF|BF|,当B,P,F三点共线时取得最小值,此时|BF|.答案6(2012陕西)如图是抛物线形拱桥,当水面在l时,拱顶离水面2米,水面宽4米水位下降1米后,水面宽_米解析如图建立平面直角坐标系,设抛物线方程为x22py.由题意A(2,2)代入x22py,得p1,故x22y.设B(x,3),代入x22y中,得x,故水面宽为2米答案2三、解答题(共25分)7(12分)设抛物线y22px(p0)的焦点为F,Q是抛物线上除顶点外的任意一点,直线QO交准线于P点,过Q且平行于抛物线对称轴的直线交准线于R点,求证:0.证明y22p
4、x(p0)的焦点为F,准线为x.设Q(x0,y0)(x00),则y2px0,R,直线OQ的方程为yx,此直线交准线x于P点,易求得P.(p,y0)p2p2p20.8(13分)已知抛物线C:y22px(p0)过点A(1,2)(1)求抛物线C的方程,并求其准线方程;(2)是否存在平行于OA(O为坐标原点)的直线l,使得直线l与抛物线C有公共点,且直线OA与l的距离等于?若存在,求出直线l的方程;若不存在,说明理由解(1)将(1,2)代入y22px,得(2)22p1,所以p2.故所求的抛物线C的方程为y24x,其准线方程为x1.(2)假设存在符合题意的直线l,其方程为y2xt,由得y22y2t0.因
5、为直线l与抛物线C有公共点,所以48t0,解得t.另一方面,由直线OA与l的距离d,可得,解得t1.因为1,1,所以符合题意的直线l存在,其方程为2xy10.分层B级创新能力提升1设F为抛物线y24x的焦点,A,B,C为该抛物线上三点,若0,则|()A9 B6 C4 D3解析设A(x1,y1),B(x2,y2),C(x3,y3),由于抛物线y24x的焦点F的坐标为(1,0),由0,可得x1x2x33,又由抛物线的定义可得|x1x2x336.答案B2(2013洛阳统考)已知P是抛物线y24x上一动点,则点P到直线l:2xy30和y轴的距离之和的最小值是()A. B. C2 D.1解析由题意知,抛
6、物线的焦点为F(1,0)设点P到直线l的距离为d,由抛物线的定义可知,点P到y轴的距离为|PF|1,所以点P到直线l的距离与到y轴的距离之和为d|PF|1.易知d|PF|的最小值为点F到直线l的距离,故d|PF|的最小值为,所以d|PF|1的最小值为1.答案D3(2013郴州模拟)设斜率为1的直线l过抛物线y2ax(a0)的焦点F,且和y轴交于点A,若OAF(O为坐标原点)的面积为8,则a的值为_解析依题意,有F,直线l为yx,所以A,OAF的面积为8.解得a16,依题意,只能取a16.答案164(2012重庆)过抛物线y22x的焦点F作直线交抛物线于A,B两点,若|AB|,|AF|BF|,则
7、|AF|_.解析设过抛物线焦点的直线为yk,联立得,整理得,k2x2(k22)xk20,x1x2,x1x2.|AB|x1x211,得,k224,代入k2x2(k22)xk20得,12x213x30,解之得x1,x2,又|AF|b0)的离心率为,以原点为圆心、椭圆短半轴长为半径的圆与直线yx2相切(1)求a与b;(2)设该椭圆的左、右焦点分别为F1,F2,直线l1过F2且与x轴垂直,动直线l2与y轴垂直,l2交l1于点P.求线段PF1的垂直平分线与l2的交点M的轨迹方程,并指明曲线类型解(1)由e ,得.又由原点到直线yx2的距离等于椭圆短半轴的长,得b,则a.(2)法一由c1,得F1(1,0)
8、,F2(1,0)设M(x,y),则P(1,y)由|MF1|MP|,得(x1)2y2(x1)2,即y24x,所以所求的M的轨迹方程为y24x,该曲线为抛物线法二因为点M在线段PF1的垂直平分线上,所以|MF1|MP|,即M到F1的距离等于M到l1的距离此轨迹是以F1(1,0)为焦点,l1:x1为准线的抛物线,轨迹方程为y24x.6(2010湖北)已知一条曲线C在y轴右边,C上每一点到点F(1,0)的距离减去它到y轴距离的差都是1.(1)求曲线C的方程;(2)是否存在正数m,对于过点M(m,0)且与曲线C有两个交点A、B的任一直线,都有0),化简得y24x(x0)(2)设过点M(m,0)(m0)的直线l与曲线C的交点为A(x1,y1),B(x2,y2)设l的方程为xtym,由得y24ty4m0,16(t2m)0,于是又(x11,y1),(x21,y2),0(x11)(x21)y1y2x1x2(x1x2)1y1y20.又x,于是不等式等价于y1y210y1y2(y1y2)22y1y210,由式,不等式等价于m26m14t2,对任意实数t,4t2的最小值为0,所以不等式对于一切t成立等价于m26m10,即32m32.由此可知,存在正数m,对于过点M(m,0)且与曲线C有两个交点A,B的任一直线,都有0,且m的取值范围是(32,32).6