《【名师伴你行】2016高考物理二轮复习 专题限时训练10 带电粒子在复合场中的运动(一)(含解析).doc》由会员分享,可在线阅读,更多相关《【名师伴你行】2016高考物理二轮复习 专题限时训练10 带电粒子在复合场中的运动(一)(含解析).doc(10页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、带电粒子在复合场中的运动(一)(限时45分钟)一、单项选择题(每小题6分,共30分)1(2015海淀模拟)如图所示,空间存在足够大、正交的匀强电场、匀强磁场,电场强度大小为E、方向竖直向下,磁感应强度为B、方向垂直纸面向里从电场、磁场中某点P由静止释放一个质量为m、电荷量为q的粒子(粒子受到的重力忽略不计),其运动轨迹如图中虚线所示对于带电粒子在电场、磁场中下落的最大高度H,下面给出了四个表达式,用你已有的知识计算可能会有困难,但你可以用学过的知识对下面的四个选项作出判断你认为正确的是()A. B. C. D.答案:A解析:长度的国际单位为米(m),根据力学单位制推导四个表达式,最终单位为米的
2、只有A选项,故A正确,B、C、D错误2(2015苏州模拟)如图所示,在MN、PQ间同时存在匀强磁场和匀强电场,磁场方向垂直于纸面水平向外,电场在图中没有标出一带电小球从a点射入场区,并在竖直面内沿直线运动至b点,则小球()A一定带正电B受到电场力的方向一定水平向右C从a到b过程,克服电场力做功D从a到b过程中可能做匀加速运动答案:C解析:无论电场沿什么方向,小球带正电还是负电,电场力与重力的合力是一定的,且与洛伦兹力等大反向,故要使小球做直线运动,洛伦兹力恒定不变,其速度大小也恒定不变,故D错误;只要保证三个力的合力为零,因电场方向未确定,故小球电性也不确定,A、B均错误:由WGW电0可知,重
3、力做功WG0,故W电0,小球一定克服电场力做功,C正确3(2015济南模拟)如图所示,一带电塑料小球质量为m,用丝线悬挂于O点,并在竖直平面内摆动,最大摆角为60,水平磁场垂直于小球摆动的平面当小球自左方摆到最低点时,悬线上的张力恰为零,则小球自右方最大摆角处摆到最低点时悬线上的张力为()A0 B2mg C4mg D6mg答案:C解析:设小球自左方摆到最低点时速度为v,则mv2mgL(1cos 60),此时qvBmgm,当小球自右方摆到最低点时,v大小不变,洛伦兹力方向发生变化,TmgqvBm,得T4mg,故C正确4(2015杭州模拟)一群不计重力的带电粒子,从容器A下方的小孔s1飘入电势差为
4、U的加速电场,其初速度几乎为0,然后经过s3沿着与磁场垂直的方向进入磁感应强度为B的匀强磁场中,最后打到照相底片D上下列说法正确的是()A电量相同的粒子进入磁场的速度大小一定相同B质量相同的粒子进入磁场的速度大小一定相同C比荷相同的粒子在磁场中运动半径一定相同D比荷相同的粒子在磁场中运动的半径与磁感应强度B无关答案:C解析:对粒子在加速电场中的运动由动能定理有qUmv2,解得v,由此可知,带电量相同、质量不同的粒子进入磁场时的速度大小不同,质量相同、带电量不同的粒子进入磁场时的速度大小也不同;对粒子进入磁场后的匀速圆周运动,由牛顿第二定律及洛伦兹力公式有qvBm,解得r,由此可知粒子在磁场中运
5、动的轨道半径与粒子的比荷有关,选项A、B、D错误,C正确5(2015临沂模拟)电视机的显像管中,电子束的偏转是用磁偏转技术实现的如图所示,电子束经加速电压U加速后进入一圆形匀强磁场区域,磁场方向垂直于圆面不加磁场时,电子束将通过圆面中心O点打到屏幕中心M点,加磁场后电子束偏转到屏幕上P点的外侧现要使电子束偏转到P点,可行的办法是()A增大加速电压B增加偏转磁场的磁感应强度C将圆形磁场区域向屏幕远离些D将圆形磁场区域的半径增大些答案:A解析:电子在电场中加速运动的过程,根据动能定理得eUmv2,解得v,电子进入磁场做匀速圆周运动,由洛伦兹力提供向心力可得evB,由以上两式可得电子运动的轨迹半径r
6、,设圆形磁场区域的半径为R,粒子在磁场中的运动轨迹如图所示,电子经过磁场后速度的偏向角为,根据几何知识得tan .增大加速电压U时,由上述分析可知,r增大,偏转角减小,能使电子束偏转到P点,A正确;增加偏转磁场的磁感应强度B时,r减小,偏转角增大,不能使电子束偏转到P点,B错误;将圆形磁场区域向屏幕远离些时,电子的偏向角不变,根据几何知识可知,不能使电子束偏转到P点,C错误;将圆形磁场的半径增大些时,r不变,R增大,增大,电子向上偏转增大,不能使电子束偏转到P点,D错误二、多项选择题(每小题6分,共18分)6(2015日照模拟)如图所示,甲是不带电的绝缘物块,乙是带正电的物块,甲、乙叠放在一起
7、,置于粗糙的绝缘水平地板上,地板上方空间有垂直纸面向里的匀强磁场,现加一水平向左的匀强电场,发现甲、乙无相对滑动,一起向左加速运动在加速运动阶段()A甲、乙两物块间的摩擦力不变B乙物块与地面之间的摩擦力不断增大C甲、乙两物块一起做加速度减小的加速运动D甲、乙两物块可能做匀加速直线运动答案:BC解析:甲、乙组成的整体,受到重力、支持力、向下的洛伦兹力、向左的电场力和向右的摩擦力作用,设甲、乙两物块质量分别为M、m,乙物块所受滑动摩擦力Ff(Mm)gqvB,随速度增大,乙物块与地面间摩擦力不断增大,B项正确;由牛顿第二定律有:EqFf(Mm)a,整体速度不断增大的过程中,加速度不断减小,C项正确,
8、D项错;对甲物块应用牛顿第二定律,FfMa,随整体加速度不断减小,甲、乙间的静摩擦力不断减小,A项错7(2015开封模拟)设空间存在竖直向下的匀强电场和垂直于纸面向里的匀强磁场,如图所示,已知一带电粒子在电场力和洛伦兹力的作用下,从静止开始自A点沿曲线ACB运动,到达B点时速度为零,C点是运动的最低点,忽略粒子的重力,以下说法中正确的是()A此粒子必带正电荷BA点和B点位于同一高度C粒子在C点时机械能最大D粒子到达B点后,将沿原曲线返回A点答案:ABC解析:粒子从静止开始运动的方向向下,电场强度方向也向下,所以粒子必带正电荷,A正确;因为洛伦兹力不做功,只有静电力做功,A、B两点速度都为0,根
9、据动能定理可知,粒子从A点到B点运动过程中,电场力不做功,故A、B点位于同一高度,B正确;C点是最低点,从A点到C点运动过程中电场力做正功最大,根据动能定理可知粒子在C点时速度最大,动能最大,C正确;到达B点时速度为零,将重复刚才ACB的运动,且向右运动,不会返回,故D错误8.(2015湖北重点中学模拟)如图所示为一种质谱仪示意图,由加速电场、静电分析器和磁分析器组成若静电分析器通道中心线的半径为R,通道内均匀辐射电场在中心线处的电场强度大小为E,磁分析器有范围足够大的有界匀强磁场,磁感应强度大小为B、方向垂直纸面向外一质量为m、电荷量为q的粒子从静止开始经加速电场加速后沿中心线通过静电分析器
10、,由P点垂直边界进入磁分析器,最终打到胶片上的Q点不计粒子重力下列说法正确的是()A粒子一定带正电B加速电场的电压UERC直径PQD若一群离子从静止开始经过上述过程都落在胶片上同一点,则该群离子具有相同的比荷答案:ABD解析:由P点垂直边界进入磁分析器,最终打到胶片上的Q点,根据左手定则可得,粒子带正电,选项A正确;由粒子在加速电场中做匀加速运动,则有qUmv2,又粒子在静电分析器中做匀速圆周运动,由电场力提供向心力,则有qE,解得U,选项B正确;粒子在磁分析器中做匀速圆周运动,根据洛伦兹力提供向心力,则有qvB,可得PQ2r,选项C错误;若离子从静止开始经过上述过程都落在胶片上同一点,说明运
11、动的轨道半径r相同,由于加速电场、静电分析器与磁分析器都相同,则该群离子具有相同的比荷,选项D正确三、计算题(每小题16分,共32分)9(2015济南模拟)如图所示的直角坐标系中,第象限内存在沿y轴负向的匀强电场,第、象限内存在垂直于纸面向外的匀强磁场,磁感应强度为B.带正电粒子M在y轴上的P点沿x轴正向射入电场,偏出电场后经x轴上的Q点进入磁场,再经磁场偏转后恰能回到原点O.已知M粒子经过Q点时的速度大小为v,方向与x轴成30角,粒子的电量为q,质量为m,不计重力求:(1)M粒子在P点的入射速度;(2)匀强电场的场强大小;(3)在Q点的正上方L处静止释放一相同的带电粒子N,若二者恰好能在磁场
12、中的某位置相遇,求N粒子需要在M粒子离开P点后多长时间释放答案:(1)v(2)Bv(3)(22)解析:(1)vPvcos 30v.(2)M粒子在磁场中运动时有qvB设OQ的距离为l,由几何关系可得l2Rsin 30RlvPtvtvyvsin 30atqEma可得EBv.(3)对N粒子:qELmv2解得vv两个粒子在磁场中运动的半径以及OQ的长度均相等,且N粒子垂直x轴入射,则圆心在O点由几何关系可知,二者的轨迹相遇点、入射点Q和两个圆心四个点正好构成一个菱形,且一个角为120M粒子到相遇点的时间tMN粒子到相遇点的时间tN解得ttMtN(22).10(2015广州模拟)如图所示,带电粒子垂直电
13、场线方向进入有界匀强电场,从Q点飞出时又进入有界的匀强磁场,并从D点离开磁场且落在了荧光屏的ON区域已知:电场方向沿纸面竖直向上、宽度为d,P、Q两点在竖直方向上的距离为d;QD为磁场的水平分界线,上方磁场垂直纸面向外、下方磁场垂直纸向里、磁感应强度大小相同,磁场宽度为d;粒子质量为m、带电量为q、不计重力,进入电场的速度为v0.(1)求电场强度E的大小;(2)大致画出粒子以最大半径穿过磁场的运动轨迹;(3)求磁感应强度的最小值B.答案:(1)(2)见解析图(3)解析:(1)带电粒子在电场中做类平抛运动,设电场强度为E,运动时间为t,运动的加速度为a,则dv0tdat2粒子在电场中,由牛顿第二定律有Eqma得E.(2)轨迹如图所示(3)粒子以最大半径穿过磁场时,对应的磁感应强度最小,设其值为B.如图设在Q点时的速度为v,沿电场方向的分速度为vy,进入磁场后粒子做圆周运动的轨道半径为r,粒子在磁场中,由牛顿第二定律得qBv由几何关系QvvyQAC,.又粒子在电场中vyat得B.- 10 -