《河北省承德市2017_2018学年高一数学上学期期中试题.doc》由会员分享,可在线阅读,更多相关《河北省承德市2017_2018学年高一数学上学期期中试题.doc(5页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、河北省承德市2017-2018学年高一数学上学期期中试题 说明:本试卷共22个小题,满分150分,时间120分钟。卷答案涂在答题卡上,只交答题纸。一、选择题:(每小题5分,共60分)1设全集Ux|xN*,x6,集合A1,3,B3,5,则U(AB)等于()A1,4B1,5C2,5D2,42、下列各图中,可表示函数yf(x)的图象的只可能是()3、下列函数中,是同一函数的是( ) A B C D 4已知f(x)则f(3)等于()A2 B3C4 D55函数y的定义域是()A(,1)(1,).B(1,1)C(,1)(1,1D(,1)(1,1)6下列四个函数yx1;yx1;yx21;y其中定义域与值域相
2、同的是()A BC D7已知集合M满足1,2M1,2,3,4,5,那么这样的集合M的个数为()A5 B6C7 D88集合Ax|y,By|yx22,则如图1阴影部分表示的集合为() 图1Ax|x1 Bx|x2Cx|1x2 Dx|1x29已知函数f(x)2x22kx8在5,1上单调递减,则实数k的取值范围是()A. B2,)C(,1 D1,10定义在R上的偶函数f(x)满足:对任意的x1,x20,)( x1x2),有0,则()Af(3)f(2)f(1)Bf(1)f(2)f(3)Cf(2)f(1)f(3)Df(3)f(1)f(2)11已知f(x)2x3,g(x2)f(x),则g(x)的解析式为()A
3、g(x)2x1 Bg(x)2x1Cg(x)2x3 Dg(x)2x312设f(x)是奇函数,且在(0,)内是增函数,又 f(3)0,则xf(x)0的解集是()Ax|3x3Bx|x3或0x3Cx|x3Dx|3x0或0x0时,f(x)1,则当x2,求实数a的取值范围.21(本小题满分12分)某公司生产一种电子仪器的固定成本为20 000元,每生产一台仪器需要增加投入100元,已知总收益满足函数:R(x)其中x是仪器的月产量当月产量为何值时,公司所获得利润最大?最大利润是多少?(利润=收益-成本)22. (本题满分12分)已知函数f(x)的定义域为(-2,2),函数g(x)=f(x-1)+f(3-2x
4、).(1)求函数g(x)的定义域.(2)若f(x)是奇函数,且在定义域上单调递减,求不等式g(x)0的解集.2017-2018学年度第一学期期中考试高一数学试题答案 选择题DADAC BDDAA BD13、【答案】1214、【答案】(1,2)15、【答案】 116、【答案】函数f(x)x2(xR)不是单函数,例如f(1)f(1),显然不会有1和1相等,故为假命题;函数f(x)是单函数,因为若,可推出x1x2x2x1x2x1,即x1x2,故为真命题;若f(x)为单函数,x1,x2A且x1x2,则f(x1)f(x2)为真,可用反证法证明:假设f(x1)f(x2),则按定义应有x1x2,与已知中的x
5、1x2矛盾;在定义域上具有单调性的函数一定是单函数为真,因为单函数的实质是一对一的映射,而单调的函数也是一对一的映射,故为真三、解答题17、 (1)由集合B中的不等式2x4x2,解得x2,Bx|x2,又Ax|1x3,ABx|2x3,又全集UR,U(AB)x|x2或x3(2)由集合C中的不等式2xa0,解得x,C.BCC,BC,2,解得a418.【解】(1)由交集的概念易得2是方程2x2ax20和x23x2a0的公共解,则a5,此时A,B5,2(2)由并集的概念易得UAB.由补集的概念易得UA5,UB,所以(UA)(UB).(UA)(UB)的所有子集即为集合的所有子集:,5,.19、【答案】解:
6、(1)f(2)2,f(2)8,f(f(2)f(2)8(2)图象如下:f(0)4f(2)8f(2)2值域为(2,8)20、【答案】由f(1)=2,得1+m=2,m=1.所以f(x)=x+错误!未找到引用源。.(1)f(x)=x+错误!未找到引用源。的定义域为(-,0)(0,+),f(-x)=-x+错误!未找到引用源。=-错误!未找到引用源。=-f(x).所以f(x)为奇函数.(2)f(x)=x+错误!未找到引用源。在(1,+)上是增函数.证明如下:设任意的x1,x2(1,+),且x1x2,则f(x1)-f(x2)=(x1-x2)-错误!未找到引用源。=(x1-x2)错误!未找到引用源。,因为1x
7、1x2,所以x1-x21,x1x2-10,所以f(x1)-f(x2)0,即f(x1)f(x2),所以f(x)在(1,+)上是增函数.(3)设任意的x1,x2(0,1),且x1x2,由(2)知f(x1)-f(x2)=错误!未找到引用源。,由于x1-x20,0x1x20,即f(x1)f(x2).所以f(x)在(0,1)上是减函数.由f(x)在(1,+)上是增函数,在(0,1)上是减函数,且f(1)=2知,当a(0,1)时,f(a)f(1)=2成立;当a(1,+)时,f(a)f(1)=2成立;而当a0时,f(a)0,不满足题设.综上可知,实数a的取值范围为(0,1)(1,+).21、【解】由于月产量为x台,则总成本为20 000100x,从而利润f(x)R(x)当0x400时,f(x)(x300)225 000,所以当x300时,有最大值25 000;当x400时,f(x)60 000100x是减函数,所以f(x)60 00010040025 000.所以当x300时,有最大值25 000,即当月产量为300台时,公司所获利润最大,最大利润是25 000元5